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AFIT/DS/ENP/07-01

Abstract

An accurate and efficient hybrid Density Functional Theory (DFT) and Multirefer-

ence Configuration Interaction (MRCI) model for computing electronic excitation energies in

atoms and molecules was developed. The utility of a hybrid method becomes apparent when

ground and excited states of large molecules, clusters of molecules, or even moderately sized

molecules containing heavy element atoms are desired. In the case of large systems of lighter

elements, the hybrid method brings to bear the numerical efficiency of the DFT method in

computing the electron-electron dynamic correlation, while including non-dynamical elec-

tronic correlation via the Configuration Interaction (CI) calculation. Substantial reductions

in the size of the CI expansion necessary to obtain accurate spectroscopic results are possible

in the hybrid method. Where heavy element compounds are of interest, fully relativistic

calculations based upon the Dirac Hamiltonian rapidly become computationally prohibitive,

as the basis set requirements in four-component calculations increase by a factor of two or

more in order to satisfy kinetic balance between the large electronic components and small

positronic components, while the size of the MRCI Hamiltonian quadruples with respect to

a non-relativistic calculation. In this hybrid method, applications to heavy element com-

pounds such as bromine and uranium were accomplished through the use of relativistic

effective core potentials, allowing for the first time both scalar relativistic and spin-orbit

effect treatment necessary for the accurate calculation of electronic excitation energies in

heavy elements in a Density Functional Theory Multireference Configuration Interaction

Hybrid Model (DFT/MRCI) method. This implementation of the original hybrid method,

developed by Grimme and Waletzke, was modified to remove inherent spin-multiplicity lim-

itations, as well as reduce the number of free parameters used in the method from five to

three.

The DFT portion of the hybrid method used 100% Hartree-Fock (HF) exchange and

an electron correlation-only density functional as the basis for a modified Graphical Unitary

Group Approach (GUGA) based CI calculation. The CI algorithm was modified to expo-

nentially scale the off-diagonal matrix elements of the CI Hamiltonian in order to reduce the

double counting of electronic correlation computed by both the DFT correlation functional

xii



and the CI calculation. The scaling applied to the interaction between states in the CI

calculation exponentially decreased to zero as the energy difference between states grew.

This algorithm left interactions between degenerate or nearly degenerate states unscaled,

while rapidly scaling to zero interactions between states widely separated in energy.

The two empirical parameters which controlled this off-diagonal matrix element scaling

were determined through the use of a training set of light atoms and molecules consisting

of H2, He, Li, Be, B, C, N, O, F, Ne, and Be2. The average DFT/MRCI errors with respect

to exact Full Configuration Interaction (FCI) results on this training set was 9.0559 milli

Hartrees (mH) over 11 atomic and molecular systems. CI expansion length tailoring through

virtual orbital freezing. Consistently favorable results were obtained when virtual orbitals

30-40 Electron Volt (eV) above the highest occupied molecular orbital were frozen, providing

the best trade off between method accuracy and reduction in CI expansion length. Using

this approach to paring the CI expansion length, reductions in the size of the CI expansions

of a factor of 25-64 were achieved.

The values of the two off-diagonal scaling parameters were determined by minimiz-

ing the average absolute error between the DFT/MRCI and exact FCI calculations for

all test atoms and molecules combined. The values of the parameters obtained for the

100% HF exchange and Perdew Burke and Ernzerhof (PBE) 1996 Generalized Gradient

Approximation (GGA) correlation functional combination were p1=0.96 and p2=2.5.

After the scaling parameters were determined using the training suite of atoms and

molecules, the method was applied to carbon monoxide, boron fluoride, the bromine atom,

the uranium 5+ and 4+ ions, and the uranyl (UO2+
2 ) ion. In all cases, the correct ordering of

ground and excited states was obtained using the DFT/MRCI model. In CO, a reduction in

overall error of 26% with respect to Time Dependent Density Functional Theory (TDDFT)

was observed over 6 ground and excited states. A reduction in overall error of 42% with

respect to TDDFT was observed in 5 ground and excited states of BF, while an accuracy

with respect to experiment of 11-22% for electronic excitation energies for the first excited

states of the bromine atom and uranium 5+ and 4+ ions was observed. Final application

of the model to the uranyl ion compared favorably with observed uranyl fluorescent series

xiii



in crystals, and was obtained with an order of magnitude reduction in the computational

effort with respect to a traditional, wave function based quantum chemistry approach.

xiv



A MULTIREFERENCE DENSITY FUNCTIONAL APPROACH TO THE

CALCULATION OF THE

EXCITED STATES OF URANIUM IONS

I. Introduction

Actinide chemistry, in particular, the chemistry of uranium, continues to be of in-

tense interest in many applications. Design, performance, aging, and disposal of nuclear

fuel components, the environmental transport of uranium compounds lingering in mines

and ore processing waste, as well as material delivered through depleted uranium muni-

tions all require a thorough understanding of the chemistry of uranium. Furthermore, the

nuclear weapon stockpile stewardship program1 demands a thorough understanding of the

processes by which uranium components age, as well as the effect aging has on the reli-

ability and performance of nuclear weapons. A cornerstone of the stockpile stewardship

program is theoretical modeling and simulation of the basic physics and chemistry involved

in the design, manufacture, maintenance, and operation of a nuclear weapon. Non-invasive

electronic spectroscopic methods may be used to diagnose the extent of nuclear weapon

component aging (66).

Of particular importance in the underlying chemistry of these uranium compounds is

the oxidation state of the uranium atom. Uranium, like most early actinides, can possess a

wide range of oxidation states, ranging from +3 to +6, due in part to chemical activation

of the uranium 5f orbitals via relativistic effects which will be described shortly. The

oxidation state of uranium can be influenced by its local chemical environment, which in

turn influences the geometry of the uranium oxide compounds. The uranium oxidation state

can be inferred through spectroscopic measurements studies, which are useful in nuclear

forensics and environmental monitoring.

Structural studies performed using x-ray or neutron diffraction on uranates concur

that uranium oxides tend to occur in either an elongated or flattened octahedral geometry

1http://www.nnsa.doe.gov/
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in uranium compounds . The consensus of these studies show that uranyl-like configurations

dominate, where the tightly bound, linear UO2+
2 ion is present, surrounded by three to

five equatorial ligands, with axial uranium-oxygen bonds lengths ranging from 1.7-2.0 Å.

Equatorial bond lengths cluster in the range of 2.0-2.4 Å, depending on the ligand species

(40) (49) (27) (38) (128) (134) (116) (141). Particularly thorough reviews of the structure

of uranium oxide are given in papers by Burns et al (26) (27), Miller (89), and by Katz (75)

as well as in the Gmelin Handbook (29) and Rabinowitch (111). Rare distorted tetrahedral

configurations or uranium oxides have been reported, with uranium-oxygen bond lengths

on the order of 1.9 Å(69).

X-ray photoelectron spectroscopy, a particular method of high energy electronic spec-

troscopy, provides insight into the electronic structure of these uranium oxides, however,

the resolution to probe, in detail, the electronic structure of the valence region below 5 eV

makes such methods insensitive to uranium bonding. Despite this lack of sensitivity, x-ray

photoelectron studies have proven useful in probing the electronic structure of inner valence

and core-like electrons in uranium oxide compounds (60) (132) (44) (133). Electronic tran-

sition energies to and from the uranium 5d, 6p, and 6s levels are typically probed in these

studies, yielding insight into the nature of these higher energy transitions.

Most insight into lower energy valence transitions in uranium oxides, where photolu-

minescence originates, has been gained from electronic photoluminescence measurements of

uranium doped crystal studies. It is in the valence region where x-ray studies lack the sen-

sitivity or resolution to fully characterize the electronic structure of the bonding. In these

crystal studies, a distorted octahedral coordination with a tightly bound, central, linear

uranyl ion is typically found (84) (129) (130) (5) (22) (18) (19) (93) (80). Photolumines-

cence in these compounds, attributed to ligand to metal charge transfer transitions from

uranium in a +6 oxidation state to oxygen ligands results in a yellow-green fluorescence

peaking at 18,000 to 21,000 cm−1. Crystal field and ligand effects lead to relatively modest

perturbations to this fluorescence spectra, typically on the order of 1000 cm−1. Lifetimes

vary, but are typically of the order of microseconds. Excellent overviews are contained in

(61) (29) and (111). One of the most detailed analyses of the electronic and vibrational

spectra of the uranyl ion was performed by Denning based on a series of experimental work

performed in the 1970s (43) (45) (42). In his study, Denning verified earlier analysis (111)

2



that the linear uranyl ion is particularly stable, with bond dissociation energies for the

uranyl ion of 700 kilo Joule (kJ) per mole. He also finds that the uranyl ion is chemically

inert. Isotopic oxygen exchange in uranyl has a lifetime of over 40,000 hours. Denning’s

examination of uranyl spectra in CsUO2Cl4 show that the 5f electron shell lies below the 6d,

with f and d separation increasing as with increasing uranium oxidation state. The uranium

5f shell is responsible for most of the ligand interactions, and the nature of the character-

istic green-yellow luminescence in uranium compounds appears to be from the presence of

low-lying, non-bonding orbitals in the 5f shell. Denning’s examination of the polarized, low

temperature crystal spectroscopy shows that the luminescence origins can be attributed to

the first two bands in the absorption spectra, and that the the low-lying excited states have

even parity. Transitions from these even-parity excited states to the even-parity ground

state are parity forbidden, and thus are magnetic dipole or electric quadrapole transitions

(41). A few studies (99) (94) report a red luminescence which is attributed to fluores-

cence originating from a distorted tetrahedral coordination of uranium with energies in the

neighborhood of 15,000 cm−1.

More recently, laser spectroscopic techniques have been applied to the analysis of

uranium oxides. Time resolved laser induced fluorescence characterization of uranium con-

tamination at Hanford was performed by Wang et al (136). Additionally, laser spectroscopy

studies on uranium in frozen matrices have been performed by Lue (83) and (3).

Statement of Problem

While there is a large amount of experimental data on the various thermo chemical

properties of uranium (75) (137), theoretical modeling of the spectra of this element has

progressed more slowly. Ab initio quantum mechanical theoretical techniques have made

great strides in understanding molecules consisting of lighter elements, and computational

methods have been quite successful in predicting thermodynamic and spectroscopic prop-

erties of these compounds. There are two main reasons for this disproportionate difficulty

in predicting the electronic spectra for heavy element compounds.

The first difficulty is that relativistic effects for actinides are significant enough that

perturbation treatments are inadequate, thus requiring a method that incorporates these

effects throughout the calculation. This is in stark contrast to lighter molecules where rela-
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tivistic effects can be neglected in all but high-precision theoretical calculations (108:3787-

3788) (7:1-27).

There are three main relativistic effects in atomic and molecular chemistry, each

roughly the same magnitude, all of which scale approximately as Z4, where Z is the nuclear

charge (108). The first main relativistic effect is considered a direct effect, consisting of a

radial contraction of atomic orbitals, along with a stabilization of the energy level of the

electronic state. This effect is due primarily to the relativistic mass increase as electron

velocities near the nucleus become appreciable fractions of the speed of light. Electron or-

bitals having high densities near the nucleus, where electron speeds are largest, experience

the largest contraction. For example, in uranium this relativistic contraction is roughly 26%

when compared with the non-relativistic Bohr radius. All atomic orbitals have some den-

sity near the nucleus, therefore, all atomic orbitals experience some contraction. However,

the inner s- and p- orbitals nearest the nucleus experience the most contraction (108). In

light-element molecules, this orbital contraction is small and negligible in all but the highest

precision calculations, but the effect becomes large in actinide elements such as uranium.

The second relativistic effect is an indirect effect, and it consists of a radial expansion and

destabilization in the electronic energy levels of outer atomic orbitals. This is due to in-

creased effective nuclear charge screening by the inner, contracted orbitals, reducing the

effective nuclear charge experienced by the outer electrons. Additionally, relativistic con-

traction of the inner s- and p- electron shells increase the electron density near the nucleus,

crowding out the outer d- and f - electron shells. This is due to the fact that there is a

decrease in electron density near the nucleus for orbitals with increasing orbital angular

momentum. Thus, the direct orbital contraction competes with the indirect orbital expan-

sion. The orbital expansions and contractions can affect bond lengths and force constants

(108), which in turn affect molecular vibrational frequencies. The final relativistic effect

that falls naturally out of the Dirac Lorentz covariant theory for the electron, described in

more detail in chapter two, is spin-orbit splitting of states. Spin-orbit splitting of states is

responsible for the most pronounced deviations of heavy elements in the period table from

lighter elements in the same column. The yellowish color of gold, while silver is colorless is

one striking example. Silver, a lighter element with less pronounced relativistic effects, has

an absorption spectra in the ultraviolet, while gold, a heavier element, has an absorption
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spectra in the visible spectrum, a direct result of a combination of all three relativistic ef-

fects. The inert pair effect observed in the ionization potential of lead versus tin is another

example of spin-orbit splitting producing chemically relevant effects. In lead the relativistic

effects stabilize and split the 6p electron shell into a 6p 1

2

and a 6p 3

2

shell, resulting in a full

and relatively inert 6p 1

2

shell. The effect is much less pronounced in tin, resulting in a much

lower ionization potential.

For lighter elements, relativistic effects are typically done through perturbative cor-

rections based on the Dirac covariant theory of the electron to the non-relativistic solutions

to the Schrödinger equation, because the magnitude of the relativistic effects for elements

in the first two rows are small. For these lighter elements, the electron-electron interactions

are much larger than the relativistic corrections, which accounts for the success of pertur-

bative approaches. Unfortunately, such perturbative methods fail on heavy elements such

as uranium, as the relativistic effects can be of the same magnitude as the electron-electron

interaction. Successfully incorporating relativistic effects in heavy element calculations are

all based on solving the fully-relativistic, many electron Dirac equation. Because the Dirac

theory results in a coupling between the electron and positron, each with two spin com-

ponents, the wave function involved is four dimensional for a one-electron system, and 4N

dimensional for a N electron system. State-of-the-art calculations using the full Dirac model

involve single heavy atoms, or very small molecules, and at present are incapable of com-

puting excited states of these systems, because such calculations require multi reference

methods which rapidly become computationally prohibitive within a four-component fully

relativistic framework. One additional complication in using a fully-relativistic Dirac model

for computational chemistry is that there must be kinetic balance between the electronic

and positronic basis sets. The reason for this is that the electronic and positronic compo-

nents in the Dirac four-component model are not independent, but they are related by the

expression

ψSC =
~σ · ~p
E +m

ψLC , (1)

where ψSC and ψLC are the small and large component wave functions, respectively, ~σ is a

Pauli spin-matrix, ~p is the momentum, E is the total energy and m is the electron rest mass.

The speed of light in Equation 1 is set to unity. The result of this kinetic-balance requirement
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is that for every basis electronic basis function used, there needs to be at least two positronic

basis functions, one with angular momentum quantum number L+ 1 and one with angular

momentum quantum number L − 1. Thus, a four-component, fully relativistic calculation

uses a basis set three times larger than a corresponding, non-relativistic calculation.

A second computational difficulty is the sheer number of electrons to deal with in

actinide compounds. Common uranium oxide compounds such as UO2 have 108 electrons,

while more complex oxides such as U3O8 has 340 electrons. The most common approach

for calculating excited states of atoms and molecules is CI, which will be discussed in more

detail in chapter three. Briefly, CI is a computational method where the electronic wave

function is expanded in terms of an orbital basis that includes both ground and excited state

electronic configurations. By including all possible combinations of electron occupation in

the orbital expansion basis, a FCI calculation is achieved, which is an exact solution to

the non-relativistic Schrödinger wave equation within the approximation of the finite basis

set. Despite this fact, CI has some serious limitations, namely, that CI calculations quickly

scale to computational impracticality on modern computers. For a calculation with K basis

functions and N electrons, the FCI calculation scales roughly as (2K
N )N (127). Taking the

U3O8 example with N = 340 and a modest, cc-pVDZ basis set with two contracted basis

functions per shell results in 196 electronic basis functions. Kinetic balance requirements add

an additional 392 positronic basis functions, for a total of K = 588 basis functions. Thus, in

the fully-relativistic, four-component FCI calculation, there are roughly (1176
340 )340 possible

N -electron configurations. Even a non-relativistic treatment, with only 196 electronic basis

functions is impractical, with (392
340 )340 or 1021 possible configurations in a FCI Hamiltonian.

Accurately treating such large numbers of electrons with an all-electron FCI method is

computationally prohibitive today. Truncating the CI calculation to a lower excitation

level, say single and double excitations only, is a more tractable computational problem.

Truncated Configuration Interaction Singles and Doubles (CISD) scales roughly as (2K)2N2

(127). Even then, in the case of the four-component calculation, the truncated CI yields

a Hamiltonian with dimension over 1011, still too large for modern computers. The non-

relativistic, truncated calculation is smaller yet, with a Hamiltonian with dimension of the

order of 1010 configurations, barely within reach of modern computers and algorithms. These

examples illustrate the computational problem one encounters with all-electron methods,
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and the additional complexity added by accounting for relativistic effects. A popular way

around these problems is through the use of Relativistic Effective Core Potentials (RECPs).

The Relativistic Effective Core Potential (RECP) approach is a compromise between

the full Dirac description, and the non-relativistic model. RECPs are covered in greater

detail in chapter two. Briefly, the RECP approach begins with atomic calculations using

the full Dirac equation. An artificial separation between core electrons and valence elec-

trons is selected, frequently based on hypotheses on which valence shell electrons are most

important in chemical bonding. Those electrons selected to be in the core are replaced in

the Hamiltonian by a potential energy term, leaving only the valence electrons to be explic-

itly modeled. This approach incorporates relativistic effects from a Dirac description of the

atom directly into the core electrons, and has the added utility in reducing the large number

of electrons present in heavy elements. These relativistic effective core potentials are then

used in non-relativistic calculations, which can be used to compute excited states of atoms

and molecules. Because the core electrons experience the most pronounced relativistic ef-

fects, calculations performed using these core potentials can produce results within a few

percent of experimental measurements of electronic spectra. Armed with these relativistic

effective core potentials, one can incorporate relativistic effects accurately and efficiently

into non-relativistic calculations. With this freedom, one can then search for the most effi-

cient non-relativistic algorithms available for calculating ground and excited states of atoms

and molecules.

DFT is another successful alternative alternative to CI. DFT is a computational

algorithm for solving the time independent, the Schrödinger wave equation, (35:245) (106:26-

29) (127:40)

Ĥψ (~x1, ~x2, . . . , ~xn) = Eψ (~x1, ~x2, . . . , ~xn) , (2)

with E being the energy. A more thorough discussion of DFT is undertaken in chapter three,

only a brief overview is given here. Unlike more traditional methods for solving equation

2, DFT is not based on N -dimensional abstract wave functions in Hilbert space, but on

the physically realizable, 3-dimensional electron density. The success of DFT is based

on the accuracy inherent in the electron density functional responsible for the electron-

electron exchange and correlation energies. While DFT is exact, in principle, for the ground
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state, current research has produced approximations for this exact exchange-correlation

density functional. An additional attractive feature of DFT is the fact that it can produce

remarkably accurate results for ground state geometries and vibrational frequencies very

efficiently. DFT algorithms scale computationally on the order of
(

K4
)

at a maximum, with

some methods approaching linear scaling in the number of basis functions. Unfortunately,

no method is known by which a DFT calculation, using a particular density functional

approximation, can be systematically improved by improvements in the basis set or through

perturbative corrections to the effective Hamiltonian. Extensions of DFT to solve the time-

dependent Schrödinger equation exist, known as TDDFT, but the accuracy of TDDFT is

poor when applied to calculated excited states of atomic and molecular systems where open-

electron shells with large degeneracies can produce a range of spin-multiplicity states that are

close in energy. Despite these drawbacks, DFT remains a computationally efficient way to

compute electronic-electron correlation in atoms and molecules with excellent computational

scaling, unlike the FCI or truncated CI.

Grimme (62) and Grimme and Waletzke (63) proposed a model which addressed the

accuracy of DFT in open-shell and degenerate cases as well as calculating excited states.

Their model combined a DFT calculation to the CI computational framework, resulting in a

hybrid method which is designed to address the deficiencies of DFT with nearly degenerate

states of multiple spin-multiplicities that are close in energy. By forming a hybrid DFT

and CI method for computing excitation energies, Grimme and Waletzke found they could

dramatically reduce the size of the CI expansion necessary to achieve results that were

more accurate than TDDFT results. Their method demonstrated accurate calculations on

excited states in their hybrid model with reductions in the CI expansion sizes on the order

of a factor of hundreds to thousands.

Research Objectives

The goal of this research is to design, implement, and test a hybrid DFT/MRCI algo-

rithm within the COLUMBUS relativistic quantum chemistry program suite. Final validation

of the research goal will be through application of the DFT/MRCI model to the uranium

+5 and +4 ions, as well as the uranyl (UO2+
2 ) ion. The U5+ ion will demonstrate the

ability of this modeling implementation to effectively compute the excitation energy of an
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odd-electron heavy element with both scalar relativistic and spin-orbit coupling of non-

singlet and triplet spin multiplicities. The U4+ ion calculation will demonstrate the same

capability, but on an even-electron heavy element, with spin-orbit coupling between singlet,

triplet and higher multiplicities. These DFT/MRCI calculations will be assessed against

equivalent Multi-reference Spin-Orbit Configuration Interaction Singles and Doubles (MR-

SOCISD) calculations and experimental measurements of the excitation energies. Calcu-

lations of the uranyl ion will demonstrate this implementation of the DFT/MRCI model

for a even-electron molecule containing a heavy element, with spin-orbit coupling between

singlet, triplet, and higher multiplicities. The uranyl DFT/MRCI calculations will be com-

pared with equivalent MR-SOCISD calculations and various crystallographic measurements

of uranyl fluorescent series. In addition to spin-orbit effects, all heavy element calculations,

including uranium, will model scalar relativistic effects as well, a capability absent in the

most recent work by Kleinschmidt et al (77).

Boundary Conditions

In order to determine two free parameters crucial to the hybrid DFT/MRCI method,

focus was placed on small, light atoms with modest basis sets, where full configuration

interaction results were obtainable. This limited the damping parameter training set to the

first two rows of the period table, with relatively small double- and triple-ζ quality basis

sets.

To assess of the performance of the model following determination of the damping

parameters, several well studied systems were chosen. The carbon monoxide molecule was

selected from the published results of Grimme and Waletzke to validate the new code by

comparison with their implementation results. The boron fluoride molecule was chosen to

reproduce published spin-orbit coupling results obtained by Kleinschmidt et al (76). The

boron fluoride molecule has a small spin-orbit splitting on the order of 20 cm−1. The

bromine atom, which exhibits a spin-orbit splitting of the ground state on the order of 3600

cm−1, was chosen to assess the performance of this model on a heavy, odd-electron doublet

atom with relatively large relativistic effects.
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The uranium +5 and +4 ions were chosen since MR-SOCISD results as well as mea-

sured experimental excitation energies were available for comparison. The uranyl ion was

also chosen because of it’s importance in uranium chemistry, and it’s electronic spectra has

been thoroughly studied, both experimentally and theoretically.

Research Overview

Chapter two describes the underlying theory, methodology and results of traditional ab

initio Multi-reference Configuration Interaction, Single and Double Excitations (MR-CISD)

calculations on the excited states of the U5+ and U4+ ions. The excited states of these ions

are calculated and assessed versus measured experimental excitation energies using a cc-

pVDZ quality basis set and a series of shape-consistent RECP with spin-orbit potentials.

Accuracy of the 60 electron, 68 electron, and 78 electron RECPs was compared to measured

experimental values in order to determine the most effective core-valence choice when using

shape-consistent core potentials in uranium calculations.

Chapter three describes the theory underlying the hybrid DFT/MRCI method, as

well as the implementation of the model within the COLUMBUS quantum chemistry program

suite. The results of the testing and validation of the model implementation are described,

as are the results from calculations using the COLUMBUS-based DFT/MRCI hybrid model to

carbon monoxide, boron fluoride, bromine, uranium +5 an +4 ions, and the uranyl ion.

Finally, an overall discussion of conclusions, both for the MR-SOCISD results on the

U4+ and U5+ ions, as well as the performance of the DFT/MRCI model as implemented

in this research is in chapter four. Success in achieving the research objectives will be

examined, and final suggestions for future research will be made.
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II. Uranium Ion Calculations

Assessment of the accuracy of calculations involving actinide elements is difficult, because of

a sparsity of well-characterized, gas-phase experimental measurements. Part of the problem

lies in the fact that interpretation of measured spectra can be complicated by the fact that

many actinide compounds can be difficult to prepare in the gas-phase. Interpretation of

condensed phase measurements can be complicated by crystal field effects or by the purity

of the samples involved.

For example, the uranyl ion, UO2+
2 , has received intense theoretical scrutiny, and

it is often used to benchmark theoretical methods involving uranium. A large, but hardly

exhaustive list of recent calculations are contained in the references (34) (32) (105) (33) (85)

(39) (64) (57) (74) (72) (142). The chemical stability of the uranyl ion, and its presence in

a majority of uranium compounds found in nature, as well as the relative insensitivity of

its electronic spectra to its chemical environment make it an excellent candidate for these

benchmarking studies. However, the lack of precise gas-phase measurements of the spectra of

the uranyl ion limits its usefulness in assessing the accuracy of calculated electronic spectra.

Variations on the order of 1000 cm−1 in the uranyl ion fluorescent spectra occur due to ligand

influences (111), limiting the precision of comparisons with theoretical models. Attempts

have been made to calculate the electronic spectra of uranyl in crystalline environments (86)

(105) (8).

One solution is to perform calculations using atomic systems, for which gas-phase

measurements have been performed and the resulting spectroscopic states are well char-

acterized. For uranium, numerous experimental measurements of the electronic spectra of

the neutral atom (90) (91) (36), as well as charged ions (17) (46) (100) (117) (139) (13)

(23) exist in the literature. All these gas-phase studies of the neutral uranium atom and

the +2, +3, +4 and +5 ionic species indicate that the low lying electronic transitions are

predominately due to 5f to 5f electronic excitations, which are parity forbidden. These

selection rule forbidden transitions result in faint yet sharp line spectra that are relatively

unaffected when examined in uranium doped crystals or aqueous solutions, indicating that

the 5f orbitals in uranium are not dominant in ligand bonding. A search through the lit-

erature reveals surprisingly few computational studies of atomic uranium species. A brief

summary of more recent calculations include predictions of the second through fourth ion-
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ization potential of neutral uranium was performed by Cao and Dolg (28), a Dirac-Hartree

Fock investigation of dipole radiative parameters for uranium VI (15) by Biémont et al, and

an investigation by Barandiaran et al of the bond lengths of fn and fn−1d1 states of U4+ as

defects in chloride hosts (8) using Complete Active Space Self Consistent Field (CASSCF)

with a spinfree relativistic Ab Initio Model Potential Hamiltonian. Barandiaran et al found

that the 5f electrons are shielded by the 6p electrons, which determine the bond lengths

in fn configurations, while in fn−1d1 configurations, an f electron penetrates the shield-

ing effects of the 6p electrons and interacts with the ligands, causing a shortening of bond

lengths in general. Seojou and Barandiaran investigated the structure and spectroscopy of

U3+ defects in Cs2NaYCl6 (118), and their findings supported the conclusions reached by

Denning et al, in that 5f to 6d transitions are responsible for the photoluminescence in the

14,000 to 21,000 cm−1 range. Fedorov et al performed an in-depth ab initio study of the ex-

cited states of uranium (55) using a transformed two-component Douglas-Kroll all electron

method and spin-orbit multi configuration perturbation theory. Using this method, they

calculated 48 odd-parity states of neutral uranium to within 1000-2000 cm−1 accuracy with

respect to experiment. An older Dirac-Hartree Fock calculation by Eliav et al (53) used a

coupled cluster method in order to predict ionization potentials and excitation energies in

the uranium +4 ion. The excited states they computed using this four-component method

with single and double coupled cluster excitations predicted the ordering of the U4+ states

correctly with a reported average error in the excitation energies of 114 cm−1.

Using the experimental measurements, as well as the theoretical results found in the

calculations described above, an accurate assessment of the theoretical method can be per-

formed and be used to guide the choice of ab initio methods, and active spaces. In addition,

understanding the uranium ion atomic systems can yield greater insight into the molecu-

lar structure of uranium compounds, since the low-lying excited states are dominated by

f → f electronic transitions which are fairly insensitive to ligand influences. One of the

major challenges to accurate quantum chemical calculations on heavy element atoms is a

result of the importance of relativity in the electronic structure of high-Z elements.
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Relativistic Effects in Chemistry

Relativistic effects in chemistry have been studied since the 1970s, with pioneering

work by Pitzer (107), Pyykkö and Desclaux (109). Many reviews of relativistic effects in

chemistry can be found in the literature (109) (107) (108) (101) (73) (6) .

There are three main relativistic effects in atomic and molecular chemistry, all of which

are roughly the same magnitude, and they scale approximately as Z4 (108). The first main

relativistic effect is considered a direct effect, consisting of a radial contraction of atomic

orbitals, along with a stabilization of the energy level of the electronic state. This effect is

due primarily to the relativistic mass increase as electron velocities near the nucleus become

appreciable fractions of the speed of light. Replacing the electron mass with its relativistic

mass in the expression for the hydrogen Bohr radius formula yields

a0 =
4πε0~

2
√

1 −
(

v
c

)2

m0e2
(3)

Here, ~ is Planck’s constant divided by 2π, ε0 is the permit

α =
e2

4πε0~c
≈ 1

137
. (4)

For uranium, Zα is 0.67, yielding a 1s orbital radial contraction of roughly 26%. All atomic

orbitals have some density near the nucleus, therefore, all atomic orbitals experience some

contraction. However, the inner s- and p- orbitals nearest the nucleus experience the most

contraction (108). In light-element molecules, this orbital contraction is small and negligible

in all but the highest precision calculations, but the effect becomes large in actinide elements

such as uranium.

The second relativistic effect is an indirect effect, consisting of a radial expansion

and destabilization in the electronic energy levels of outer atomic orbitals. This is due

to increased effective nuclear charge screening by the inner, contracted orbitals, reducing

the effective nuclear charge experienced by the outer electrons. Additionally, relativistic

contraction of the inner s- and p- electron shells increase the electron density near the

nucleus, crowding out the outer d- and f - electron shells. This results in a decrease in

electron density near the nucleus for orbitals with increasing orbital angular momentum.
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The direct orbital contraction competes with the indirect orbital expansion, which can

affect bond lengths and force constants (108). These effects are observed in the spectra

of heavy-element molecules. Spin-orbit coupling is another important spectroscopic effect

which arises naturally from a Lorentz covariant description of the electron.

Intrinsic electron spin is a natural result of a Lorentz-covariant description of the

quantum mechanical wave equation (7:76-78,116). This spin angular momentum couples

with the electron orbital angular momentum, lifting degeneracy in atomic orbitals with

angular momentum. Of the three effects, spin-orbit coupling has the largest impact in

atomic and molecular spectra, even for low-Z atoms and molecules. For light atoms, a

perturbative treatment of spin-orbit coupling known as Russell-Sanders coupling, or L-S

coupling, often yields sufficient accuracy for electronic transition energies. This coupling

scheme treats magnetic spin-orbit coupling as a small perturbation to the electron-electron

electrostatic interaction. Orbital angular momentum and spin angular momentum are still

approximately constant quantum numbers in this coupling scheme, where the total orbital

angular momentum , L, total spin angular momentum, S, and total angular momentum, J

commute with the many-electron Hamiltonian in Russell-Sanders coupling scheme. Atomic

states are described by term symbols 2S+1LJ . Traditional spectroscopic notation is used

for the total orbital angular momentum, with S representing zero total orbital angular

momentum, P representing one unit of orbital angular momentum and so on. J is the total

angular momentum of the electron, given by the sum of orbital and spin angular momenta

(58:69-74) (140).

On the other end of the perturbation spectrum, more appropriate for very heavy

atoms, the electron-electron electrostatic interaction is treated as a perturbation to the mag-

netic spin-orbit coupling. This coupling scheme is known as j-j coupling. In this coupling

scheme, neither L nor S commute with the Hamiltonian. However, the total angular mo-

mentum, J , still commutes with the atomic Hamiltonian (58:74-76) (140). Most elements

on the periodic table fall between these two perturbation extremes, and so intermediate

coupling is more appropriate than either perturbative treatment. Intermediate coupling is

not a separate coupling scheme, but occurs as deviations from the separate perturbative

treatments given by L-S and j-j coupling (58:77) (140).
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Electron spin additionally has an important affect on the symmetry of molecules.

Under the assumption that the total electronic wave function can separated into the product

of a spatial and spin wave functions, each wave function may possess separate symmetry,

and the total, observable state symmetry is given by the direct product of the spatial and

spin symmetries. For example, singlet spin states are completely symmetric, while triplet

spin states transform like the components of the angular momentum operator. A completely

symmetric spatial wave function multiplied by a triplet spin wave function will not be totally

symmetric. For systems with a spin-orbit Hamiltonian, the symmetry point groups can have

twice the number of symmetry operations, and are called double point groups. This doubling

of the order of the symmetry point groups is due to the introduction of half-integral angular

momentum values. Systems possessing an even number of electrons obey Bose-Einstein

statistics, and the total wave function of these bosonic systems is symmetric with respect to

rotations by 2π. Systems possessing an odd number of electrons obey Fermi-Dirac statistics,

and fermionic wave functions change sign upon the exchange of two particles. This exchange

is equivalent to a rotation by 2π, and so a rotation of 4π returns a fermionic system to its

original state. While bosonic systems transform according to the irreducible representations

of the single point groups, where a rotation by 2π is equivalent to the identity operation,

the rotation by 2π is a new symmetry operation for fermionic systems, doubling the order

of the symmetry point group. For example, rotations of an even-electron system, such as

the U4+ ion, transforms according to the normal irreducible representations of the O(3)+

point group. Rotating the molecule by 2π leaves the wave function unchanged. An odd-

electron system, such as U5+, transforms according to the extra irreducible representations

generated by a rotation of 2π. A rotating of the U5+ molecule by 2π changes the sign of

the total electronic wave function. A rotation by 4π in this case returns the wave function

to its original configuration (4:22-28).

These three main effects, orbital contraction and energy stabilization, orbital expan-

sion and energy destabilization, and spin-orbit coupling, along with the double group sym-

metry constitute the chemically relevant relativistic effects in atoms and molecules. The

most important, from a spectroscopic standpoint is spin-orbit coupling, even in the spectra

of the lightest elements. A quantum mechanical treatment of the electron must account for
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the intrinsic magnetic moment of the electron, and the Dirac equation accomplishes this

quite elegantly.

Theory

Attempts at finding a Lorentz invariant form for the time dependent Schrödinger’s

equation,

ĤΨ (~x1, ~x2, . . . , ~xn, t) = i~
∂Ψ (~x1, ~x2, . . . , ~xn, t)

∂t
, (5)

led to two Lorentz-covariant equations: the Klein-Gordon equation, and the Dirac equation

(138). In equation 5, Ĥ is the Hamiltonian operator, while Ψ (~x1, ~x2, . . . , ~xn) represents

an N electron wave function. Each ~xi represents the electronic coordinates of the ith

electron. Equation 5, because of the non-equivalent treatment of the spatial and temporal

variables, is not Lorentz invariant, and therefore is limited to non-relativistic phenomena.

Early attempts at making a Lorentz-covariant equation began by quantizing the Lorentz-

covariant relativistic energy expression (138),

E2 = p2c2 +m2
0c

4. (6)

Here, p is the electron momentum, c is the speed of light, m0 is the electron rest-mass,

and E is the electron energy. Replacing the energy and momentum expressions with their

quantized operator counterparts leads to the Klein-Gordon wave equation for a free particle

(7:99-101) (88:884-888) (16:4-6,198-206),

−~
2∂

2Ψ

∂t2
= −~

2c2∇2Ψ +m2
0c

4Ψ. (7)

While this scalar wave function is Lorentz-covariant, in that both space and time variables

are treated equivalently, it has several undesirable properties, making it unacceptable as

a wave function for the electron. First, the probability density associated with it is not

positive definite, resulting in the possibility of negative probability densities. Additionally,

both positive and negative energy solutions to this equation exist, which complicated early

interpretation of the solutions to this wave equation. The negative energy solutions were

eventually understood to represent antimatter. The fact that the probability density is not
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positive definite makes this equation a poor choice for an electronic wave function; however,

the Klein-Gordon turns out to be a valid relativistic wave equation for spin-free fields, such

as π-mesons (88:888) (7:108) (138).

The Dirac Equation. Dirac took a different approach in formulating a Lorentz-

covariant equation for a free electron (47) (48) (7:110-119) (138). Beginning with equation

7, one can obtain a nonlinear Hamiltonian, given by

ĤDirac = ±
√

p2c2 +m2
0c

4. (8)

Quantizing this expression by the usual substitutions for the energy and momentum opera-

tors yields a Hamilton that involves a first-order time derivative. However, the square root

in the operator makes application problematic and hopelessly complicated. Dirac circum-

vented this problem by introducing a new degree of freedom into the Hamiltonian. This

yields a tractable, linear operator,

ĤDirac = c (α̂1 ~p1 + α̂2 ~p2 + α̂3 ~p3) + β̂m0c
2. (9)

Requiring solutions to equation 9 to simultaneously satisfy the Klein-Gordon equation in

equation 7 places restrictions on the components of the α̂i and β̂ matrices,

α̂iα̂j + α̂jα̂i = 2δij , (10)

β̂2 = 1̂, (11)

and (12)

α̂kβ̂ + β̂α̂k = 0. (13)

In order to satisfy these restrictions both the α̂i and β̂ must be at least four-by-four ma-

trices, which operate on a four-component, spinor wave function. The Dirac equation is

a set of four, coupled, first order partial differential equations in space and time. The

four-component wave function solution to this equation has two positive energy compo-

nents, corresponding to an electron with spin-up and spin-down, and two negative energy

components, corresponding to a positron with a spin-up and spin-down component.
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In the presence of an external field, the Dirac Hamiltonian, ĤD, becomes

ĤD = eφ+
∑

i

cα̂i ·
(

~pi −
e ~Ai

c

)

+ β̂m0c
2, (14)

where e is the electron charge, c is the speed of light, φ is the electrostatic potential, and

~Ai is the ith component of the magnetic vector potential.

For the hydrogen atom, with no external magnetic field, this equation reduces to

ĤD = eφ+
∑

i

cα̂i · ~pi + β̂m0c
2, (15)

While it is possible to construct an exact solution to this equation in terms of spherical har-

monics for the angular coordinates and hyper geometric functions for the radial coordinate,

such a construction does not shed much light on the nature of the bound energy states. The

details of the solution can be found in various sources (88) (7:119-129,159-175) (14:63-70)

(138). The electronic energy levels for the Dirac hydrogen atom are given by (14:68) (138)

(7:167-168)

Enj =
m0c

2

√

√

√

√1 +

(

Zα

n−j+ 1

2
+
√

(j+ 1

2)
2
−Z2α2

)

. (16)

Here, α is the fine structure constant, defined in equation 4, and the total angular momentum

quantum number, j, takes on the values

j = l +
1

2
,

∣

∣

∣

∣

l − 1

2

∣

∣

∣

∣

. (17)

The binding energy of the hydrogen atom is given by Enj − E0, where E0 = m0c
2 .

Expanding Enj − E0 in powers of (Zα)2, assuming Zα� 1 , yields (14:84)

Enj = −Zα

2n2
+

(3 + 6j − 8n) (Zα)4

8 (1 + 2j) n4
. (18)
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The first term is the non-relativistic energy for the bound electronic states of the hydrogen

atom. Higher order corrections involve both the principle quantum number n, as well as the

total angular momentum quantum number j. This illustrates the importance of a relativistic

picture of the hydrogenic atom. Corrections to the non-relativistic energy increase roughly

as (Zα)4 . Note that this Taylor series expansion in powers of (Zα)2 is appropriate for

(Zα) � 1 . This expansion leads to the Russell-Sanders spin-orbit coupling scheme. Such

an approximation is not valid for uranium, where Zα ≈ 0.7 . In this case, the electrostatic

electron-electron interaction can be treated as a perturbation to the magnetic interaction

between the electron and the field of the nucleus. This approximation leads to the j-j

spin-orbit coupling scheme, which is more appropriate for very heavy elements. However,

for most elements on the periodic table, including uranium, neither perturbation regime

is appropriate. Instead, an intermediate coupling scheme that exhibits features of both

Russell-Sanders and j − j coupling is what is observed.

Detailed examination of the negative energy component solutions to the Dirac equa-

tion for the free electron shows in the non-relativistic limit where E −m0c
2 � m0c

2, the

amplitude of the positive energy components are much larger than the negative energy

component amplitudes, especially in the valence region (7:143-144). The four-component

Dirac wave function separates into two large and two small components. Rewriting the

Dirac equation in terms of two, coupled differential equations with two, two-component

wave functions yields the Pauli approximation to the Dirac Hamiltonian in the absence of

an external magnetic field (7:145-147)

ĤPauli = E + eφ+
1

2m0
∇2 +

1

2m0c2
(E + eφ)2 +

i
µ0

2m0c
~E · ~p− µ0

2m0c

[

σ̂ ·
(

~E × ~p
)

− µ0

(

σ̂ · ~H
)]

. (19)

In this equation, ~H is the magnetic field, ~E is the electric field, and µ0 is the Bohr magneton,

defined by

µ0 =
e~

2m0c
. (20)

Each separate term has a simple interpretation. The first three terms form the non-

relativistic Hamiltonian. The next term is the mass-velocity correction that accounts for the
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variation in electron mass with speed. The fifth term is known as the Darwin term, and is

a result of zitterbewegung, or trembling motion. It is a result of the Heisenberg uncertainty

principle. Non-relativistically, the uncertainty in the location of an electron can be mea-

sured to any accuracy using higher and higher energy photons. Relativistically, there is a

limit to photon energy used to locate the electron, because at photon energies above 2m0c
2

, pair production can occur. This results in an effective smearing of the charge of the elec-

tron (7:186). The final two terms account for the spin-orbit coupling between the intrinsic

electron magnetic moment and the orbital angular momentum. The successes of the Dirac

equation is the prediction of electron spin as an observable property in the non-relativistic

limit, as well as accounting for the correct value for the electron magnetic moment. Thus,

the inclusion of electronic spin in the non-relativistic theory as an additional assumption is

validated and explained in the non-relativistic limit of the Dirac equation.

Relativistic Effective Core Potentials. Many methods exist for treating relativity

in ab initio calculations, ranging from fully relativistic four-component calculations to two-

component calculations using transformed versions of the Dirac Hamiltonian, as well as

density function theory methods, but one particularly effective and popular choice is to

use RECPs. Their utility comes from the fact that they introduce the most important

relativistic effects in the form of an additional set of terms in the Hamiltonian which replace

one or more core electrons. Using an RECP not only allows relativistic effects to be taken

into account, but the number of electrons that need to be treated in a ab initio calculation

is reduced as well. Several reviews of RECPs exist in the literature (51) (92) (68) (126)

(50).

Several different types of RECPs exist. All are developed based on a fully relativistic,

four-component theory such as Dirac-Hartree-Fock. Energy and shape consistent RECPs are

similar in that both use pseudo-orbitals, which are designed to go smoothly and nodelessly

to zero in the core region. Energy consistent RECPs incorporate experimentally measured

atomic electronic excitation energies in the construction of both the RECP and accompa-

nying pseudo orbital basis. Shape-consistent RECPs and their accompying pseudo orbitals

do not include these semi empirical corrections and are based on fits to the four-component

relativistic calculation alone.
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Shape-consistent core potentials and pseudo-orbitals are generated from the two-

component spinor resulting from a Dirac-Fock calculation (54). Two forms are frequently

encountered, a spin-free, averaged RECP,

UAREP = UAREP
L (r) +

L−1
∑

l=0

l
∑

m=−l

[

UAREP
l (r) − UAREP

L (r) |lm〉 〈lm|
]

. (21)

Here, UAREP = UAREP
L (r), is given by a weighted average of spinor components with the

same J value,

UAREP
L (r) =

1

2l + 1

[

lUREP
l,l− 1

2

(r) + (l + 1)UREP
l,l+ 1

2

(r)
]

, (22)

and a spin-dependent term,

HSO = ~s ·
L
∑

l=1

[

2

2l + 1

]

∆UREP
L (r) ·

l
∑

m′=−l

l
∑

m=−l

∣

∣lm′
〉 〈

lm′
∣

∣~l |lm〉 〈lm| , (23)

with ∆UREP
l (r) = UREP

l,l+ 1

2

(r) − (l + 1)UREP
l,l− 1

2

(r). Both UAREP
L and HSO potentials are fit to

Gaussian-type functions of the form

UAREP
l =

1

r2

∑

i

Clir
nliexp(−ζlir2). (24)

The averaged relativistic effective core potentials described above are widely encountered in

quantum chemical calculations, due to the ease of inclusion of these one component pseudo

potentials into existing one component algorithms. The spin-orbit potential, however, is

a two-component operator, which requires a two-component wave function. This require-

ment for a two-component wave function is the main reason why spin-orbit potentials are

infrequently used in quantum chemistry calculations. Shape-consistent pseudo potentials

and pseudo orbitals are particular attractive for two reasons. One reason is that the shape-

consistent pseudo potentials are completely ab initio, meaning they are derived from first

principles without empirical fits to experimental data, as is done with energy-consistent
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RECPs. A second reason to use shape-consistent pseudo potentials is that a spin-orbit

operator can be derived along with the RECP.

Basis Sets for Use with Shape-consistent RECPs. Correlation-consistent double-ζ

quality basis sets are generated using restricted open-shell Hartree-Fock atomic calculations.

This procedure results in a shell-averaged description of a particular spin-state of the atom.

Because exponent collapse can be a frequent occurrence when using 1s primitives in opti-

mization of the exponents for heavy-element atom basis sets (20), Cartesian d functions are

frequently used, with an additional linear combination added to represent the 3s functions.

Such functions vanish at the origin, making them quite useful with shape-consistent pseudo

potentials, which go smoothly and nodelessly to zero at the origin. Exponent collapse can

occur during the development of 2p basis functions, though not as often. In this case Carte-

sian f functions can be used to circumvent the exponent collapse that can occur in the

exponent optimization in larger basis sets. When 2p function primitives are used, an extra

primitive is typically added to ensure the vanishing of the derivative of the contracted func-

tion at the origin (31). When Cartesian functions of higher principle quantum number are

used (3sd, 4pf , etc.), the resulting contracted functions need not have their functional be-

havior at the origin compensated with an additional primitive, as they already go smoothly

and nodelessly to zero at the origin. Polarization functions are added, and the exponents

are hand optimized using MR-SOCISD calculations, typically involving correlation of the

5f electrons for uranium.

Methodology

There is no single, correct determination of the appropriate core-valence electron cutoff

point when constructing RECPs. Other authors have investigated RECP accuracy in various

atomic and molecular systems , exploring the various effects of basis set and core-valence

cutoff using energy- and shape-consistent RECPs in comparison with experiment.

One such study by Stoll compared calculated bonding properties in the gold dimer

(Au2) using both large-, medium- and small-core energy-consistent pseudo potentials (125).

His definitions of core size in gold included the 1s − −4s, 2p − −4p, 3d − −4d and 4f

electron shells for the small-core, medium-core to include small-core electrons plus 5sp
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electrons, and finally a large core definition of small-core plus 5spd electrons. Stoll found

that in an energy-consistent pseudo potential, the medium core does not yield a good spatial

separation between the core and valence electron shells, and the large-core choice interferes

with bonding contributions from the 5d shell. Stoll concluded that some supplemental

information from an all-electron or small-core calculation is essential when performing large-

core calculations on molecular systems with significant overlap. He also found that core-

valence and even core-core interaction corrections were necessary to supplement large-core

calculations on equilibrium geometries, dissociation energies, and vibrational frequencies.

Another important study involving RECPs by de Jong thoroughly investigated the

bond lengths and vibrational frequencies of the uranyl ion (UO2+
2 ) using a number of four-

component, all-electron Dirac-Hartree-Fock, Dirac-Hartree-Fock with second order pertur-

bation corrections, and Dirac-Hartree Fock with singles, doubles, and perturbative triple

coupled cluster contributions (39). He compared these fully-relativistic, all-electron results

to calculations using large- and small-core shape- and energy-consistent RECPs in con-

junction with HF, HF plus second-order perturbation theory, and DFT calculations using

both a Local Density Approximation (LDA) and hybrid GGA density functionals. He con-

cluded that inclusion of the uranium 5d electron shell in the small-core RECP valence space

was necessary to obtain favorable comparisons with the four-component benchmark calcu-

lations. He found that the best results were obtained with small-core, energy-consistent

RECPs, and that g basis functions were necessary when using a correlated method such

as second order perturbation theory. He also found that the hybrid GGA density func-

tional performed better than the LDA functional when compared with the four-component,

correlated benchmark calculations.

The effect of varying the core-valence cutoff using P. A. Christiansen et al shape-

consistent RECPs to examine the ground and low-lying excited states of the U4+ and

U5+ atomic cations were calculated. These species were chosen because of the tractable

sizes of the MR-SOCISD expansions when using Correlation Consistent Valence Double-ζ

with Polarization Functions (cc-pVDZ) quality basis sets. Three RECP core sizes were

investigated for both cations: a 60 electron core, a 68 electron core, and a 78 electron

core. The 78 electron core produces the valence electronic configuration for U5+ the valence

electron configuration of 6s26p65f1. All other electrons with principle quantum number 5
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and below are included in the core. The 68 electron core promotes the 5d shell from the

core to the valence space, while the 60 electron core also frees the 5s and 5p shells from the

core into the valence space. The 62 electron core choice was not investigated in this study.

Its performance was assumed to be similar to the 60 electron core, in that the inclusion of

the 5s2 together with the 5p6 was important, and that there would be minimal savings in

computational effort in neglecting the 5s shell. For these ionic uranium species, electronic

spectroscopic measurements find the lowest energy electronic transitions to be weak and

sharp, which is characteristic of electric dipole forbidden f → f transitions. This suggests

that at a minimum, the 5f electrons must be present in the valence space. Table 1 lists the

valence electrons for each RECP for the ground state neutral uranium atom.

Table 1 Valence Electrons Included in Uranium PAC-RECPs

PAC-RECP Valence Electrons

60e 5s2 5p6 5d10 6s2 6p6 5f3 6d1 7s2

68e 5d10 6s2 6p6 5f3 6d1 7s2

78e 6s2 6p6 5f3 6d1 7s2

The COLUMBUS 6.0beta program suite (110) (82) was used to compute MR-SOCISD

ground and excited electronic states of the U5+ and U4+ atomic uranium cations. Calcu-

lations were performed using the D2h Abelian point group. The uranium shape-consistent

relativistic effective core potentials (54) were obtained from P. Christiansen (56). Cal-

culations on the both uranium cations were performed using cc-pVDZ quality basis set

developed for use with the various shape-consistent RECPs by Dr. Scott Brozell for the

uranium +2 ion from Restricted-Open Hartree Fock (ROHF) 6s26p66d25f2 configuration

averaged calculations. The cc-pVDZ basis sets are summarized in Table 2. In all basis sets,

a p contraction was added in order to force the derivative of the p-functions be zero at the

origin (31).

Selection of the Reference Space. Both (5f6d)1 and 5f1 references spaces were

used. The occupied molecular orbitals were obtained from restricted open shell Hartree–

Fock average-of-configuration calculations. In all calculations, the core electrons of the

effective core potentials (5s, 5p, 5d) were frozen at the Hartree-Fock level in subsequent CI
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Table 2 Basis Sets for Use With Uranium PAC-RECPs

cc-pVDZ
Core size basis

60e (7sd5p4f1g)/[5sd3p2f1g]
68e (5sd4p4f1g)/[4sd2p2f1g]
78e (4sd4p4f1g)/[3sd2p2f1g]

calculations. The 6s electrons, being core-like in the cc-pVDZ basis set, were also frozen.

The 6p electrons were constrained to remain doubly occupied in all references, however, sin-

gle and double excitations from the 6p shell were allowed. For U5+ only two MR-SOCISD

calculations of 15 eigenvalues each were necessary in D2h point-group symmetry to fully

characterize the ground and excited states, one for odd states, the other for even states.

States of this odd-electron system transform like the double-valued irreducible representa-

tions of the double-group. State assignment (J , L, and S) was made through analysis of

the degeneracy and parity of the computed eigenvalues.

All 91 even states arising from the 5f2 electron configuration were computed, but only

the first few low-lying odd states were listed. Dr. Scott Brozell performed the calculations

on the U4+ cation listed in Tables 5 and 6 (25). The resulting states obtained for the

even-electron U4+ system transform according to the appropriate single-valued irreducible

representations of the double-group. The spherical symmetry of the atomic calculation was

verified by investigating the degeneracy in the Ag, B3g, Au, and B3u states. Again, state

assignment (J , L, and S) was made via analysis of the degeneracy and parity of the eigen-

values. Results of the above calculations were compared with experimental measurements

of the excited states of the uranium systems compiled and available on line (17).

Results

Results for the U5+ calculations are summarized in Tables 3 and 4.

Table 3 lists the results for those calculations on U5+ using all seven references arising

from a 5f1 active space. The 2F states exhibit relative errors of roughly 10% when compared

with experiment, except for the 78 electron cc-pVDZ case, where the relative error was
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Table 3 U5+ Results, 5f1 Reference Space

Principle 60e 68e 78e
LS PAC-RECP PAC-RECP PAC-RECP

J Component cc-pVDZ cc-pVDZ cc-pVDZ1 Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

5

2
u 2Fo

5

2

0 0 0 0
7

2
u 2Fo

7

2

7977(+4.8) 7560(-0.6) 6598(-13.3) 7608.6
3

2
g 2D 3

2

102642(+12.8) 103246(+13.5) 114999(+26.4) 90999.6
5

2
g 2D 5

2

112459(+11.9) 112030(+11.5) 125463(+24.8) 100510.5
5

2
u 4Fo

5

2

124443 116683 117376
7

2
u 4Fo

7

2

129006 121025 121261
1

2
g 2S 1

2

154042(+8.9) 156038(+10.3) 166266(+17.5) 141447.5

RMS devia-
tion

10.1% 10.2% 21.2%

Table 4 U5+ Results, (5f6d)1 Reference Space

Principle 60e 68e 78e
LS PAC-RECP PAC-RECP PAC-RECP

J Component cc-pVDZ cc-pVDZ cc-pVDZ1 Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

5

2
u 2Fo

5

2

0 0 0 0
7

2
u 2Fo

7

2

7990(+5.0) 7578(-0.4) 6641(-12.7) 7608.6
3

2
g 2D 3

2

87760(-3.6) 92570(+1.7) 115240(+26.6) 90999.6
5

2
g 2D 5

2

97593(-2.9) 101403(+0.9) 125704(+25.1) 100510.5
5

2
u 4Fo

5

2

124554 116809 117588
7

2
u 4Fo

7

2

129116 121471 121471
1

2
g 2S 1

2

140841(-0.4) 146989(+3.9) 166507(+17.7) 141447.5

RMS devia-
tion

3.4% 2.2% 21.3%
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nearly 20%, the 2D and 2S states show large relative errors of 10 to 30% with respect to

experimental measurements. The 4F states were not reported in the experimental references.

In the cc-pVDZ 78 electron RECP U5+ calculation, the ordering of the 2D and 4F states was

reversed. Without experimental measurements for the 4F states, however, the qualitatively

correct ordering of the 2D and 4F states can not be resolved at this time.

The 68 electron RECP cc-pVDZ performs nearly as well as the 60 electron core calcu-

lation overall, however, the relative error for the first excited state is much more favorable

in the 68 electron core calculation, on the order of 1% for the 68 electron core versus nearly

5% for the 60 electron core. Table 4 lists the results for those calculations on U5+ result-

ing from the 12 possible references arising from a (5f6d)1 active space. Including the five

references arising from 6d1 electronic configurations improves the relative errors in the 2D

and 2S states. Additionally, using the larger, 12 orbital active space produces consistent

ordering of the 2D and 4F states in all calculations. The 68 electron calculation results in

the lowest relative and RMS errors overall.

Table 5 lists the results for those calculations on U4+ resulting from an 5f2 reference

space, while Table 6 lists the U4+ results from a (5f6d)2 active space.

In the 5f2 active space calculation, the 68 electron core, cc-pVDZ calculation outperforms

the 60 electron core cc-pVDZ calculation in both relative and Root Mean Square (RMS)

error. The relative and RMS errors observed in the 78 electron core, cc-pVDZ calculation on

U4+ are an order of magnitude improved over the U5+ results, rivaling the results obtained

using the 68 electron core. In the (5f6d)2 active space calculation, the 68 electron core,

cc-pVDZ calculation outperforms the 60 electron core cc-pVDZ calculation in both relative

and RMS error. Using a larger active/reference space had little impact on the overall results

for the event U4+ states, all of which arise from 5f → 5f transitions. Again, the 78 electron

core results are roughly equivalent in magnitude to the 68 electron core results, both in

relative error and overall RMS error.
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Table 5 U4+ Results, 5f2 Reference Space

Principle 60e 68e 78e
LS PAC-RECP PAC-RECP PAC-RECP

J Component cc-pVDZ cc-pVDZ cc-pVDZ Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

4g 3H4 0 0 0 0
2g 3F2 5221(+25.5) 4210(+1.2) 4097(-1.5) 4160.65
5g 3H5 6731(+9.7) 6316(+2.9) 5518(-10.1) 6136.88
3g 3F3 10290(+14.5) 9075(+1.0) 8291(-7.7) 8983.53
4g 3F4 10536(+11.7) 9697(+2.8) 8692(-7.9) 9433.76
6g 3H6 12724(+10.5) 11950(+3.8) 10480(-9.0) 11514
2g 1D2 19892(+20.8) 17152(+4.2) 16146(-1.9) 16465
4g 1G4 18413(+10.5) 17097(+2.6) 15177(-8.9) 16656
0g 3P0 21134(+23.4) 18153(+6.0) 17572(+2.6) 17128
1g 3P1 24157(+21.9) 20903(+5.5) 20022(+1.0) 19819
6g 1I6 26955(+21.0) 25411(+14.1) 23316(+4.7) 22276
2g 3P2 29231(+18.6) 25794(+4.6) 24124(-2.1) 24653
0g 1S0 51162(+17.3) 48851(+12.0) 45112(+3.4) 43614
RMS devia-
tion
(even states
only)

17.9% 6.4% 6.0%

4u 3Ho
4 75242(+27.1) 73734(+24.6) 81507(+37.7) 59183.36

2u 3Fo
2 75856(+27.2) 74421(+24.8) 84586(+41.8) 59639.66

3u 3Go
3 79550(+26.2) 78560(+24.6) 90788(+44.0) 63052.78

4u 1Go
4 81699(+24.7) 79748(+21.7) 88999(+35.8) 65538.11

RMS devia-
tion
(all states) 26.3% 24.0% 40.0%
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Table 6 U4+ Results,(5f6d)2 Reference Space

Principle 60e 68e 78e
LS PAC-RECP PAC-RECP PAC-RECP

J Component cc-pVDZ cc-pVDZ cc-pVDZ Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

4g 3H4 0 0 0 0
2g 3F2 5186(+24.6) 4180(+0.5) 4007(-3.7) 4160.65
5g 3H5 6764(+10.2) 6357(+3.6) 5606(-8.7) 6136.88
3g 3F3 10287(+14.5) 9085(+1.1) 8291(-7.7) 8983.53
4g 3F4 10510(+11.4) 9678(+2.6) 8640(-8.4) 9433.76
6g 3H6 12776(+11.0) 12017(+4.4) 10622(-7.7) 11514
2g 1D2 19793(+20.2) 17088(+3.8) 15183(-4.1) 16465
4g 1G4 18405(+10.5) 17096(+2.6) 15973(-7.8) 16656
0g 3P0 20983(+22.5) 18068(+5.5) 17296(+1.0) 17128
1g 3P1 24052(+21.4) 20854(+5.2) 19841(+0.1) 19819
6g 1I6 26975(+21.1) 25463(+14.3) 23385(+5.0) 22276
2g 3P2 29139(+18.2) 25753(+4.5) 23999(-2.7) 24653
0g 1S0 50373(+15.5) 48194(+10.5) 43855(+0.6) 43614
RMS devia-
tion
(even states
only)

17.5% 6.2% 5.7%

4u 3Ho
4 56722(-4.2) 59993(+1.4) 60036(+1.4) 59183.36

2u 3Fo
2 57143(-4.2) 60389(+1.3) 62316(+4.5) 59639.66

3u 3Go
3 60382(-4.2) 64082(+1.6) 68396(+8.5) 63052.78

4u 1Go
4 63070(-3.8) 65889(+0.5) 67033(+2.3) 65538.11

RMS devia-
tion
(all states) 4.1% 1.3% 5.0%
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Finally, the ionization potential in eV is computed from the uranium +5 and uranium

+4 data for each RECP, with results listed in Tables 7 and 8. No experimental measurement

of this ionization potential was found in the literature.

Table 7 U4+ Ionization Potential, 5fn References

60e 68e 78e
PAC-RECP PAC-RECP PAC-RECP
cc-pVDZ cc-pVDZ cc-pVDZ

(eV) (eV) (eV)

46.47 46.86 47.51

Table 8 U4+ Ionization Potential, (5f6d)n References

60e 68e 78e
PAC-RECP PAC-RECP PAC-RECP
cc-pVDZ cc-pVDZ cc-pVDZ

(eV) (eV) (eV)

46.50 46.89 47.57

Analysis

Two factors impacting the relative and overall errors in the calculation of the elec-

tronic excitation energies of the U5+ and U4+ cations are the sizes of the relativistic effective

potential core and the reference space. The effect of the core size in the uranium cation

calculations shows that the 68 electron core performs well in both the small 5fn and (5f6d)n

reference spaces. States that arise from electron configurations not included in the reference

space were poorly modeled in all calculations, and skew the overall RMS error accordingly.

These states are the 2D and 2S states in the U5+ calculations, which arise from 6d1 and

7s1 electron configurations, respectively. Similarly, the odd states in the U4+ calculations,

arising from 5f16d1 electron configurations are not modeled well using only the 5f2 refer-

ences. The larger error in those states can be explained by the fact that excitations from

electron configurations specifically in the reference space represent excitation levels higher

than single and double excitations. For example, states produced by 6d1 configurations
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are computed at the single and double excitation level when using a smaller 5f1 reference

space, however, these same states contain selected contributions of higher order (triple and

quadruple) excitations from the larger (5f6d)1 active space. Thus, the 2D states are com-

puted at excitation levels higher than singles and doubles when computed using the larger

active space.

In both uranium cation calculations, the 68 electron core produced the lowest relative

and RMS errors, on the order of 1-2% for those states included in the reference space in

the U5+ calculations. The 78 electron core produces large relative and RMS errors in the

U5+ calculation. The 60 electron core produces better results in terms of overall RMS and

relative error when compared with the 78 electron core, however, the accuracies produced

by the 60 electron shape-consistent RECP do not warrant the larger computational effort

involved in its use, which involve CI expansions larger by roughly a factor of two to five

over the 68- and 78-electron RECP. For the +4 cation, however, different results were

obtained. When examining only the even states arising from the 5f2 configurations, both

the 68 and 78 electron core calculations produced roughly equivalent results, both of which

outperform the 60 electron core. Inclusion of the odd states arising from 5f16d1 electronic

configurations skew the overall errors in favor of the 68 electron core.

One possible explanation for the relative success of the 68 electron core RECP in the

U5+ calculation may lie in the nature of the core and valence electron shell treatments.

Recall the various valence electrons included in each RECP listed in table 1. Incorporation

of an electron shell in the core allows for a relativistic treatment (relativistic contraction

and expansion, as well as spin-orbit splitting) of those electrons, while relativity is treated

indirectly, via interaction with the core potential, in the valence electrons. Electrons in the

core p-shells are known to exhibit the largest spin-orbit spitting, so inclusion of the uranium

5p shell in the core in order for an accurate relativistic description seems warranted, as is

done in the 68 and 78 electron core potentials. Removal of the uranium 5d shell from the

valence space, as is done in the 78 electron shape-consistent core potential, does not allow

for polarization of the 5d electron shell. The 68 electron core RECP strikes one possible

compromise between relativity and polarization, with a relativistic treatment of the 5p shell,

and a valence treatment of the 5d shell. The near degeneracy of the 5f and 6d shells in

many uranium atomic species seems to require an accurate treatment of the 6d electronic
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excitations, which can be facilitated by freeing the 5d shell from the core and into the valence

electron space.

The similar performance of the 78 and 68 electron cores in the even-state U4+ calcu-

lations seems to counter the argument presented above. One possible source of this result is

the fact that in this core potential treatment, there are no core-valence interactions possible,

so the shape-consistent core potential method does not include any way for the core region

to polarize. Thus, while the 68 electron core allows polarization of the 5d electrons, while

only incorporating relativistic effects indirectly, through interaction with the core potential,

the 78 electron core allows a relativistic treatment of the 5d electrons, but no relaxation

of the 6d shell to occur. One possible explanation of the observed results is that these

treatments are roughly the same magnitude, and that a higher order description of the

core-valence interaction may be necessary to resolve the near degeneracy in the 68 and 78

electron core results. The fact remains, however, that the 78 electron core calculations rep-

resent a lower computation cost, and give reasonably accurate results, in the even-state U4+

calculations. It should be noted that event the 2% RMS error obtained in the 68-electron

RECP calculation on U5+ is poor when compared with the precision obtainable in exper-

imental measurements photoluminenscence spectroscopy. The presence of a trend may be

established by examining the U3+ and U2+ cations. The similiar performance in the 68

and 78 electron cores does not carry over to the odd-states in the uranium +4 cation above

the 4u state. This could be a result of significant contribution of the 7s references to the

2u states and above, which are not present in the reference spaces examined here. Marked

improvement in the odd-states is observed in going from the 5f2 to the (5f6d)2 reference

space calculations.

Overall, applying Christiansen et al shape-consistent relativistic effective core poten-

tials in MR-SOCISD calculations of the ground and excited states of U5+ and U4+ ions shows

that the 68 electron PAC-RECP, along with a cc-pVDZ basis set, yields relative errors with

respect to experimental measurements of 1 to 3% of experiment for each calculated state,

part of which may be due to a fortuitous cancellation of error based on analysis of results

obtained using double-ζ quality basis sets. The lowest relative errors in excitation energies

were achieved when the reference space included all the electron configurations spawning
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the states of interest. Inclusion of the spin-orbit interaction is crucial in these calculations,

as the lowest energy electronic transitions in U5+ and U4+ arise from 5f → 5f transitions.
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III. The COLUMBUS-based DFT/MRCI Model

This chapter details the theoretical basis underlying the DFT/MRCI model, as well as de-

tailed analysis of critical aspects of the model. The implementation, testing, and validation

of the DFT/MRCI model is presented in detail, followed by applications of the model to

various atomic and molecular systems and a discussion of the results obtained.

Theory

The theoretical foundation behind this hybrid DFT/MRCI model lies in the union

of two distinct theoretical approaches to quantum chemistry: the Kohn-Sham approach to

DFT and GUGA CI.

Non-relativistic Quantum Theory. The main goal of non-relativistic computational

quantum chemistry revolves around the need to solve, exactly if possible, the time dependent

Schrödinger wave equation for many-electron atoms and molecules. The time dependent

equation is (35:211)

In Equation 5, Ĥ is the Hamiltonian operator, while Ψ (~x1, ~x2, . . . , ~xn) represents an

N electron wave function. Each ~xi represents the electronic coordinates of the ith electron.

For time independent states, the Schrödinger wave equation reduces to (35:245) (106:26-29)

(127:40)

Ĥψ (~x1, ~x2, . . . , ~xn) = Eψ (~x1, ~x2, . . . , ~xn) . (25)

This representation assumes the Born-Oppenheimer approximation is valid, where the nu-

clear and electronic wave functions are uncoupled and treated separately. In this approxima-

tion, the electronic Hamiltonian operator, Ĥ can be written using atomic units (127:41-42)

(106:155-156) as

Ĥ = −1

2

N
∑

i=1

∇2
i −

N
∑

i=1

M
∑

a=1

Za

ria
+

1

2

N
∑

i=1

N
∑

j=1

1

rij
. (26)

where ria is the distance between the electron i and nucleus a, Za is the charge on the

a-th nucleus, and rij is the distance between electron i and electron j. The first term is

the electronic kinetic energy operator, the second term is the electronic-nuclear attraction

potential energy, while the last term represents the electron-electron repulsion potential

energy.
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One approach to solving Equation 25 is to expand the electronic wave function, ψ

in a product of N independent, one-electron wave functions, ψ =
N
∏

i=1
ϕi(~xi), with each ϕi

is a one-electron wave function called an orbital. The Pauli Exclusion Principle requires

that this wave function be antisymmetric upon the exchange of any two electrons. A Slater

determinant is one useful mathematical construct that results in a properly antisymmetric

wave function, defined by

Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(~x1) ϕ2(~x1) · · · ϕN (~x1)

ϕ1(~x2) ϕ2(~x2) · · · ϕN (~x2)
...

...
. . .

...

ϕ1(~xn) ϕ2(~xn) · · · ϕN (~xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (27)

where each determinant represents a particular electron configuration in the many-electron

system (78). Wave functions can be formed from either a single Slater determinant, as is

the case in the Kohn-Sham or Hartree-Fock approximations, or by linear combinations of

Slater determinants.

The Hartree-Fock Approximation. The Hartree-Fock method finds the set

of orthogonal molecular orbitals, that, when antisymmetrized using a single-determinant,

yields the lowest possible energy. The Hartree-Fock approximation is a variational method,

in that the Hartree-Fock energy obtained is guaranteed to be bounded from below by the

exact energy of the system. The Hartree-Fock approximation is a mean-field approximation,

where each electron experiences the average field of all other electrons, with the wave func-

tion written as a single Slater determinant of one-electron orbitals. The difference between

the exact, non-relativistic energy and the Hartree-Fock energy is defined as the correlation

energy.

Correlation energy, which comes from two sources, is not modeled by the Hartree-Fock

approximation by definition. The first source of correlation energy, non-dynamic correlation,

is a result of the failure of the single Slater determinant model to adequately model the

correlation between electrons with opposite spins. The second source of correlation energy,

dynamic correlation, is from electron-electron coulombic interactions not modeled accurately

by the mean-field approximation (127:231-232) (106:284-288) (37:541-542).
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The Hartree-Fock energy is given by (37:37-96) (127:108-151) (106:269-307)

EHF =

N
∑

i=1

(

i| ĥ |i
)

+
1

2

N
∑

i=1

N
∑

j=1

[(ii|jj) − (ij|ji)], (28)

where the first term includes the one-electron kinetic and potential energies given by

(

i| ĥ |i
)

=
∑

a

∫

ϕ∗
i (~x1)

(

−∇2 − Za

ria

)

ϕi(~x1)d
3x1. (29)

The second term the electron-electron Coulomb repulsion, modeling the local interaction

between two charge densities, given by the integral (127:113)

(ii|jj) =
〈

ϕi(~x1)|Ĵj |ϕj(~x2)
〉

=

∫

|ϕi(~x1)|2
1

r12
|ϕj(~x2)|2 d3x2d

3x1, (30)

where |ϕi(~x1)|2 is the probability density for the ith electron.

The third term in Equation 28 the electron-electron exchange interaction energy, which

is a non-local interaction between an electron at a particular position and all the other

electrons with identical spin over all space. This term correlates the motions between

electrons with parallel spin. The energy is given by the integral (127:113)

(ij|ji) =
〈

ϕi(~x1)|K̂j |ϕj(~x2)
〉

=

∫

ϕ∗
i (~x1)ϕj(~x1)

1

r12
ϕ∗

j(~x2)ϕi(~x2)d
3x2d

3x1. (31)

In operator form, the Hartree-Fock equation is given by (127:114)

F̂ϕi(~x1) =



ĥ(~x1) +
N
∑

j 6=i

Ĵj(~x1) − K̂j(~x1)



ϕi(~x1) = εiϕi(~x1), (32)

where F̂ is the Fock operator defined in Equation 32, and Jj is defined by (127:113)

Ĵj(~x1)ϕi(~x1) =

[∫

ϕ∗
j (~x2)

1

r12
ϕj(~x2)d

3x2

]

ϕi(~x1) (33)

and Kj is defined by (127:113)

K̂j(~x1)ϕi(~x1) =

[∫

ϕ∗
j (~x2)

1

r12
ϕi(~x2)d

3x2

]

ϕj(~x1). (34)
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This molecular orbital basis representation of the Fock operator is diagonalized, and the

total Hartree-Fock energy is then given by

E0 =
N
∑

i

〈

i|ĥ|i
〉

+
1

2

N
∑

i

N
∑

j

〈ij||ij〉, (35)

with 〈ij||ij〉 given by
〈

i|Ĵj |i
〉

−
〈

i|K̂j |i
〉

(36)

Correlation effects can contribute roughly 1 eV (23 kcal/mol) to the total electronic

energy per electron pair (112). An accurate treatment of electronic correlation is critical

in order to perform meaningful comparisons between theoretical and experimental spectra.

The Kohn-Sham approach to DFT is an elegant method for computing dynamic correlation

energy using a single-determinant model.

The Kohn-Sham Approach to DFT. An alternative approach to solving Equation

25 using an electronic wave function is to use the electron density in two famous theorems.

Hohenberg and Kohn proved that an exact solution to Equation 25 could be obtained using

the electron density (70).

The first Hohenberg-Kohn theorem states that the potential is a unique functional

of the density, neglecting a trivial constant factor. This simple theorem proves that the

electron density completely determines the external potential, which, in turn, completely

specifies the Hamiltonian. Hohenberg and Kohn’s second theorem proves that this energy

functional of the electron density is a minimum only when the exact ground-state density

is used. Moreover, the only part of the energy functional that is system dependent is the

external potential, Vext (~r). For atomic and molecular systems, this external potential is 1
rij

.

This implies that there exists a universal kinetic energy and electron-electron interaction

functional, valid for any electronic system. Thus,

E0 [ρ] =

∫

Vext (~r)ρ (~r) d~r + FHK [ρ] ,

FHK [ρ] = T [ρ] + Vee [ρ] .

(37)
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In equation 37, T is the kinetic energy density functional, and Vee is the electron-electron

interaction potential. Here, Vee [ρ] can be split into classical and non-classical terms,

Vee [ρ] =
1

2

∫

ρ (~r1) ρ (~r2)

|~r1 − ~r2|
d~r1d~r2 + Vnon−classical [ρ] . (38)

Hohenberg and Kohn’s second theorem outlines a procedure for finding this exact ground

state density. The theorem states that the exact energy can be determined via the variational

principal, and that the exact density yields the lowest, exact energy. The only drawback

is that the universal functional, FHK [ρ], is not known. However, the existence of such a

functional is guaranteed, and once it is found, the non-relativistic Schrödinger wave equation

can be solved exactly for the ground state electron density. While the Hohenberg-Kohn

theorems proved the existence of a unique, exact energy functional of the electron density

which would variationally yield the exact ground state energy of an atom or molecule, it

did not proscribe a method for finding this density. In 1965, Kohn and Sham introduced a

set of self-consistent equations which provided a means for computing the density efficiently

(79), very similar to the linear combination of atomic orbital method of Roothaan equations

(114) (115) for the Hartree-Fock model. The Kohn-Sham approach introduced a fictitious,

non-interacting system built from one-electron orbitals. However, unlike the Hartree-Fock

model, where the one-electron orbitals are variationally optimized to yield the lowest total

energy, the Kohn-Sham orbitals are chosen in order to reproduce the exact ground state

density. In the Hartree-Fock approximation, the kinetic energy can be exactly written as

THF = −1

2

N
∑

i=1

〈ϕi|∇2 |ϕi〉 , (39)

exact because of the exact treatment of the non-local exchange potential in the Hartree-Fock

formulation. In the Kohn-Sham approach, a non-interacting reference system is introduced,

creating an effective Hamiltonian given by

ĤKS =
−1

2

N
∑

i=1

∇2 +

N
∑

i=1

Vs (~ri), (40)
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where Vs (~ri) is an effective, local potential. The Kohn-Sham approach then consists of

choosing Vs (~ri) in order to yield the exact, ground state density from

ρ (~r) =
N
∑

i=1

fi |ϕKS (~r)|2 . (41)

Here, the fi are Kohn-Sham orbital electron occupations numbers, while the φKS are the

Kohn-Sham molecular orbitals. The main idea behind the Kohn-Sham approach is to take

the universal functional of Hohenberg and Kohn, FHK in Equation 37, and approximate it

by separating out the energy of a non-interacting system, which accounts for the majority

of the total energy of a system. Thus,

FHK [ρ] = Ts [ρ] + Ec [ρ] , (42)

where Ts [ρ] represents the strictly local kinetic energy functional of a non-interacting sys-

tem of electrons with density ρ (~r), and Ec [ρ] is defined as the exchange and correlation

energy of the interacting system of electrons. Ec[ρ] includes the kinetic energy of the inter-

acting electronic system, as well as Coulomb electron-electron correlation and non-classical

fermionic exchange. All these density functionals are all local, in that electron density at a

point in space can only affect the energy in a small region of space. The fermionic exchange

interaction described earlier is a non-local interaction, in that the electron density over all

space affects the energy locally. This non-local aspect of the exchange interaction is a major

challenge in the development of approximate density functionals, and it is the foundation

of the Taylor expansion approach in exchange functional development.

Varying the energy functional with respect to the density yields the Kohn-Sham equa-

tions (79)
{

−1

2
∇2 + [ϕ (~r) + µxc [ρ]]

}

ϕKS
i (~r) = εiϕ

KS
i (~r) , (43)

with

ϕ(~r) = v(~r) +

∫

ρ(~r)

|~r − ~r
′ |d~r

′

. (44)

Here, v(~r) is the Coulomb potential, and µxc[ρ] is the correlation (and interacting kinetic

energy) density functional. Together, ϕ(~r) + µxc[ρ] form an effective potential, veff (~r).
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The main reason for the popularity of DFT as a computational tool today is that

the same computational code developed and optimized for HF Self-Consistent Field (SCF)

calculations could be immediately used for DFT calculations, the only difference being

the need for evaluation of integrals over the correlation density functional. This allows

introduction of electron-electron correlation to be included in a calculation with nearly

the same computational cost as a Hartree-Fock calculation. DFT provides an inexpensive

method to compute electron-electron dynamic correlation energy using an efficient one-body

correlation operator.

A number of approximations to the universal functional give by Equation 42 exist,

with the most successful based upon numerical fits to quantum mechanical Monte Carlo

calculations on the ground state of a homogeneous electron gas by Ceperley and Alder (30).

Accurate hybrid functionals have also been developed that include some mixture of exact

HF exchange, including B3LYP (12), PBE (102), and PBE0 (2).

More accurate modeling the non-local aspects of the exchange operator, through the

inclusion of higher order Taylor expansions of the electron density, also known as Jacob’s

Ladder (87) (131), has lead to the development of modern density functionals . Local

density functionals involve only the electron density, while a GGA functional uses both the

electron density and the gradient of the electron density. Modern functionals incorporate

the Lapacian of the electron density, resulting in meta-GGA density functionals.

Configuration Interaction and the Graphical Unitary Group Approach. A concep-

tually simple and popular method to compute electron-electron correlation energy is CI.

In a CI calculation, the many-electron wave function is expanded in a series of states that

differ from the ground state by exciting one or more electrons from a ground-state occupied

molecular orbital to an unoccupied virtual orbital. Including all states that differ from the

ground state by a single excitation is known as Configuration Interaction Singles (CIS),

while including all possible single and double excitations is known as CISD. A FCI calcu-

lation is obtained if all possible excitations were included in the expansion. In the limit of

a complete basis set, the full CI calculation yields the exact solution to the many-electron,

non-relativistic Schrödinger equation. The CI approach does not require additional physics
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beyond the one-electron orbital model of Hartree-Fock, it simply corrects for deficiencies in

the orbital basis chosen.

The CI wave function is written

Ψ = c0Ψ0 +
∑

a,i

cai Ψ
a
i +

∑

a,b,i,j

cab
ij Ψab

ij +
∑

a,b,c

c
a,b,c
ijk Ψabc

ijk + · (45)

The first term is the HF wave function, the second term is a sum over all singly excited

states from the HF ground state, the third term consists of a sum over all doubly excitations,

and so on. Additionally, the expansion coefficients, cabc·
ijk·, are variationally optimized. In

practice, this CI expansion must be truncated at some point, typically at single and double

excitations. Brillouin’s theorem (127:233-236) proves that there is no direct mixing between

the HF ground state and singly excited states. However, the HF ground state does mix

with the doubly excited states, which in turn couples to the singly excited states. The first

logical place to truncate the CI expansion in order to obtain an improvement of the HF

wave function is to truncate Equation 45 at single and double excitations.

The CISD method, while conceptually simple, can be very computationally demand-

ing. It is known to exhibit slow convergence to the exact total electron correlation energy. In

an N -electron system using K basis functions, the number of all possible double excitations

is given by (127:232) (37:543).





N

2









2K −N

2



 . (46)

The number of configurations involved in the CISD method scales roughly as (2K)2N2 . An

additional drawback to truncated CI expansion calculations is the fact that the truncation is

not size extensive. A size extensive calculation scales linearly with the number of component

parts of the system. For example, a size extensive calculation on the system AB, and two

calculations on A and B separately provide the same accuracy both on the combined system

as well as the individual component parts. Size extensivity is important when calculating

certain molecular properties, such as dissociation energies. One result of non-size extensivity

in truncated CI calculations is that a calculation on the system AB contains excitations not
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present in the component calculations on either A or B separately. Full CI calculations are

size extensive, however, they are only possible using relatively small atomic or molecular

systems with modest basis sets.

CI calculations provide a conceptually simple, yet computationally demanding way

to compute both dynamic and non dynamic electron correlation energy. CIS calculations

can not change the HF ground state, as a result, they do not model dynamic electron

correlation. They do, however, model some of the multi determinant nature of the electronic

wave function and can model some of the non dynamic electron correlation energy. CISD

calculations model a portion of both dynamic and non dynamic electron correlation.

Two different approaches to performing CI calculations exist, determinant-based CI

and GUGA-based CI. The first approach uses computes the complete CI Hamiltonian in

a Slater determinant basis, where each Slater determinant is formed through excitation of

electrons from some reference determinant or determinants. It is relatively straightforward

to generate arbitrary excitation levels within a determinant basis, up to the full CI exci-

tation levels of N excitations in an N electron system. This is achieved through simple

substitution of virtual for occupied orbitals in the appropriate Slater determinant. Once

the CI Hamiltonian is formed in the determinant basis, it is stored, either in memory or on

disk, and then diagonalized. In general, Slater determinants are not spin eigenfunctions, and

linear combinations of Slater determinants must be formed in order to construct states with

well-defined spin multiplicity. This approach faces disk access bottlenecks, as large numbers

of one- and two-electron integrals necessarily need to be accessed, essentially randomly, in

order to construct the CI Hamiltonian. Once constructed, this Hamiltonian must be stored

in some fashion in order to apply some large, sparse, symmetric matrix diagonalization rou-

tine in order to find the eigenvalues. These requirements can become quite demanding for

large molecules, large basis sets, or both (120:86-88).

One way around this limitation is to use a direct method. In a direct method, the

appropriate Hamiltonian matrix elements are constructed as needed, then discarded. This

can reduce the disk access requirements, in that a relatively small subset of information

need be stored. An effective way to determine which Hamiltonian matrix elements need
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to be computed for the eigenvalue of interest, and from these, the one- and two-electron

integrals and the coupling coefficients involved (120:86-88).

The GUGA direct CI (113) (52) approach accomplishes just that. The technical details

of GUGA are examined in detail in the literature (119) (120) (121).

Using unitary group techniques, a compact representation of the CI orbital basis is

possible in the form of a Distinct Row Table (DRT). Using this DRT, one can efficiently

construct all possible Configuration State Functions (CSFs) arising from some reference

electronic configuration, or set of reference configurations. CSFs, which are spin eigenfunc-

tions, can be efficiently defined in terms of molecular orbitals using the DRT, taking into

account both spin-multiplicity and spatial symmetry. Not only does the DRT allow compact

and efficient organization of the orbital basis functions into CSFs, it also provides, through

the graphical representation, insight into the structure of the CI Hamiltonian. Figure 1

(122) shows the graphic depiction of a distinct row table for a MR-CISD calculation. The

reference CSFs are shown in red. The MR-CISD graph is broken up into two distinct re-

gions, internal (active and inactive), and external spaces. The internal space consists of

those orbitals that are occupied in the reference configurations. Inactive orbitals are doubly

occupied in all references, while active orbitals can be either doubly, singly, or unoccupied

in the reference space. External orbitals, or virtual orbitals, are unoccupied in the reference

space. The structure of the graph of the external space is relatively simple, and indepen-

dent of the size of the number of external orbitals. The MR-CISD graph is arranged in this

fashion due to the regular structure of the external space, and inactive internal space (122).
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Figure 1 Distinct Row Table Graph for Multi Reference Single and Double Excitation
Configuration Interaction Expansion (122)
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The Unitary Group and the Repartitioning of the Hamiltonian. The utility of

the GUGA approach so far has been to compactly and efficiently index all possible CSFs

arising from some arbitrary excitation level within an orbital basis. Truncation of this CI

expansion is easily achieved, removing individual CSFs, groups of CSFs, or even entire

excitation levels. The real power behind the GUGA approach lies in its ability to describe

the coupling between CSFs, allowing the efficient computation of the CI Hamiltonian matrix

elements between CSFs (120:65-69).

There is a direct correspondence between the CI Hamiltonian matrix elements between

CSFs and the matrix elements of the unitary group generators, Êij . These unitary group

matrix elements can be constructed from generator operators, which satisfy the commuta-

tion relation (120:69-70) (123)

[

Êij , Êkl

]

= δjkÊil − δilÊkj, (47)

corresponding to

ÊijÊkl − δjkÊil = ÊklÊij − δilÊkj. (48)

This generator operating on a Configuration State Function (CSF) has the effect of moving

an electron from orbital j to orbital i without changing the overall spin-state. This is useful

because the generators of the unitary group satisfy the same commutation relation as the

second-quantization substitution operators (124),

Êij = X̂
†
iαX̂jα + X̂

†
iβX̂jβ, (49)

where the X̂† are creation operators, and the X̂ are annihilation operators, creating or

annihilating an electron in spatial orbital i or j with spin α or β. In second-quantization

form, the Hamiltonian is (120:65-66)

Ĥ =
∑

ij

∑

σ

hijX̂
†
iσX̂jσ +

1

2

∑

ijkl

∑

στ

[ij; kl] X̂†
iσX̂

†
kτ X̂lτ X̂jσ, (50)

where

hij = 〈i |h| j〉 , (51)
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and

[ij; kl] =

〈

i (1) k (2)

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

j (1) l (2)

〉

. (52)

In Equation 50, σ and τ run over electron spin states α and β.

It is useful to repartition the CI Hamiltonian so that states are described not relative

to the vacuum state, but instead states are described relative to some reference state or

states. A particularly useful choice is to select a reference occupancy, µk, corresponding to

the most common orbital occupancy in the reference space. A new set of modified one- and

two-body unitary group operators can be defined by (120:66-69)

F̂ij = Êij − µiδij , (53)

f̂ij,kl = êij,kl− (54)
(

µiδijÊkl + µkδklÊij − µiµkδijδkl

)

+ (55)

1

2

(

µiδilÊkj + µkδkjÊil − µiµkδilδkj

)

+ (56)

1

2
(2 − µi) δijδklδkj . (57)

This definition removes reference occupancy contributions from terms in Equation 50. In-

troducing a modified Fock operator (120:68)

û = ĥ+
∑

k

µk

(

Ĵk − 1

2
K̂k

)

, (58)

with Ĵk and K̂k being the normal Coulomb and exchange operators. Using the definitions

presented in equations 53 through 58, along with modified one-electron integrals defined by

(120:68-69)

uij = hij +
∑

k

µk

(

[ij; kk] − 1

2
[ik; kj]

)

, (59)

one can recast the second quantized form of the Hamiltonian, Equation 50, into a reparti-

tioned form,

Ĥ = E0 +
∑

ij

uijF̂ij +
1

2

∑

ijkl

[ij; kl] f̂ij,kl. (60)
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In this repartitioned form, the reference energy, E0 is given by

E0 =
1

2

∑

i

[µi (hii + εi) − µi (2 − µi) gii] , (61)

where gij = [ii; jj] − 1
2 [ij; ji] and εi = uii = hii +

∑

k µkgik.

Matrix Elements of the Repartitioned Hamiltonian. Now that the reparti-

tioned Hamiltonian has been suitably defined in Equation 60, the next step in order to

perform a GUGA based CI calculation is to compute the matrix elements between arbitrary

CSFs.

Matrix elements between two CSFs, m and m′, are obtained from (124)

〈

m′
∣

∣

∣Ĥ
∣

∣

∣m
〉

=
∑

ij

∑

σ

hij

〈

m′
∣

∣

∣Êij

∣

∣

∣m
〉 1

2

∑

ijkl

∑

στ

[ij; kl]
〈

m′ |êij,kl|m
〉

, (62)

with Êij the unitary group generator, and êij,kl given by

ÊijÊkl − δjkÊil = êij,kl = êkl,ij. (63)

The matrix elements of the generator Êij and êij,kl are coupling coefficients between two

CSFs. For diagonal, or weight, generators, Êii, the matrix elements are particularly simple,

given by (124).
〈

m′ |Eii|m
〉

= δm′mni (m) . (64)

Here, ni(m) is the occupancy of orbital i in the CSF m. The one-body raising and lowering

generators are adjoint, Êij = Ê
†
ji, resulting in (120:70) (124)

〈

m′
∣

∣

∣
Êij

∣

∣

∣
m
〉

=
〈

m
∣

∣

∣
Êij

∣

∣

∣
m′
〉

. (65)

Because of 65, matrix elements over the raising generators, Êij need only be computed. An

additional identity
〈

m′
∣

∣

∣
Êij

∣

∣

∣
m
〉

= 0, (66)
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further simplifies things, provided i < j and m′ ≥ m. Outside of the range (i, j), the two

CSF orbital occupancies and spin coupling must coincide. Inside the range (i, j), a loop in

the DRT graph is formed. Vertices of the m and m′ branches of the loop must be related

by (120:70-72) (124)

N ′
k = Nk + 1 (67)

and

S′
k = Sk ± 1

2
, (68)

in order for a non-vanishing matrix element, 〈m′ |Eij |m〉 to be non-vanishing, where Nk and

Sk are the electron occupation and spin-multiplicity at the k-th level of the DRT respectively.

This limits the possible relationships between two vertices in the DRT graph at each level k.

The value of the matrix element can be constructed from the product of individual segment

values within the loop (120:73) (124)

〈

m′ |Eij |m
〉

=
∏

k=(i,j)

ω
(

Qk; d
′
kdk,∆bk, bk

)

. (69)

Here, Qk is a segment type symbol, with possible values Qk = W, R, L, R,L,R, or L. By

defining Tk = (Qk; d
′
kdk,∆bk) as a segment shape symbol, one obtains (120:73) (124)

〈

m′ |Eij |m
〉

=
∏

k=(i,j)

ω (Tk, bk) , (70)

where Tk is now dependent only on the shape of the segment interaction, and all segment

interactions with the same shape are equivalent. These Tk are one-body segments. The

end result is that the GUGA CI matrix element between two interacting CSFs depends

only on the difference in electron occupation and spin-multiplicity over a limited range of

orbitals. In the graphical representation, these interacting CSFs form a loop over a narrow

range of levels on the DRT, with a limited number of possible arc interactions. The CI

matrix element can be constructed as a factored product of separate loop interactions over

the range of orbitals where the two CSFs differ, either by occupation, spin-multiplicity, or

both. All possible one body loop segment shapes are shown in Figure 2. Step numbers
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are shown in red, along with relative b values. The loop values are also listed below each

segment shape (124).

A similar treatment of the matrix elements of the two-body generators yields (120:76-

86) (124)
〈

m′ |eij,kl|m
〉

=
∏

p∈S1

ω (Tp, bp)
∑

x=0,1

∏

p∈S2

ωx (Tp, bp) , (71)

where S1 = (i, j) ∪ (k, l) − S2 and S2 = (i, j) ∩ (k, l). S1 is the non-overlapping region

between the two CSFs, while S2 is the overlapping region. S1 and S2 range over i, j,

k, and l, inclusive. Again, the result is that the matrix element can be factored into

shape dependent factors, which are equivalent as long as segment shapes are the same, and

level dependent factors, bp. Through a careful definition of the various Tk segment shape

symbols, matrix elements over one-body and two-body unitary group generators can be

computed. These matrix elements are then the coupling coefficients between CSFs in both

the Hamiltonian and the repartitioned Hamiltonian, and facilitate an efficient, loop-driven

(24) direct CI calculation (120:86-96) (124). All non-zero contributing loop segment shapes

to the CI Hamiltonian are shown in Figure 3.
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Figure 2 One Body Loop Segments (124)
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Figure 3 Non-zero Loop Contributions to the CI Hamiltonian (120:92)
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Hybrid DFT/MRCI Model. While DFT accounts for dynamic electron-electron

correlation via an approximate correlation density functional, it has difficulty in modeling

atomic and molecular systems with significant multi determinant character. This is not

necessarily a failing of the theory, which, in principle, is exact if the exact universal den-

sity functional was known and used, but a failing of the approximate density functionals

developed to date.

One possible way to model this multi reference, non-dynamic electron-electron corre-

lation was proposed by Grimme (62). His approach was to use the Kohn-Sham molecular

orbitals generated by a DFT calculation as the expansion basis for a relatively small CIS

calculation. His idea was that the CI calculation would provide a way to compute the multi

determinant non-dynamic correlation, while the single reference DFT calculation modeled

the dynamical electron-electron correlation via the approximate correlation density func-

tional.

By performing CIS in his first paper, and later CISD with Walteske (63), Grimme

was able to compute electronic excitation energies of several systems known to have signifi-

cant non-dynamic electron correlation accurately when compared with experiment and more

traditional, wave function based approaches. During the construction of the CI Hamilto-

nian, Grimme and Waletske construct an effective DFT/CI Hamiltonian using the following

construction for diagonal matrix elements (63)

〈ωw|ĤDFT − EDFT |ωw〉 = 〈ωw|Ĥ − EHF |ωw〉 −
nexc
∑

c

FHF
cc − FKS

cc +

nexc
∑

a

F̂HF
aa − F̂KS

aa +
1

nexc

nexc
∑

a

nexc
∑

c

pJ (aa|cc) − p [N0] (ac|ac) , (72)

where FKS
ij is the matrix element of the Kohn-Sham effective Hamiltonian given by

FKS
ij = hij + (i|Vc (ρ) j|) +

∑

k

nk (ij|kk) , (73)

and ω and w represent spin-coupling pattern and spacial occupation vector, respectively.

Grimme and Waletske replace the HF orbitals with their Kohn-Sham counterparts,

then they scale the two electron contributions to the excitation energy by empirically de-

52



termined constants, pj and p[N0]. According to their research, the scale factor pJ depends

on the amount of exact HF exchange used in the computation of the Kohn-Sham orbitals,

and is given in this case by

pJ = 1 − xHF , (74)

where xHF is the amount of exact HF exchange used in the DFT calculation, taking the

value of zero if no Hartree-Fock exchange was included, and one if no exchange functional

was used. The second parameter, p[N0], depends on the number of open shells, N0 in the

state |ωw〉. They observed a systematic increase in p[N0] as the number of open shells

increased in their calculations, and they assumed a linear relationship between p[N0] and

N0. For singlet states, they assumed the relationship

p[N0] = 1p[0] +N1
0α, (75)

while for triplet states,

p[N0] = N3
0α. (76)

Note that their method did not allow any spin coupling aside from single or triplet states.

Any new spin coupling state would require additional empirical parameters in their method.

For off-diagonal elements 〈ωw|ĤDFT |ω′w′〉, where DFT can provide no information about

the coupling between states, Grimme and Waletske use a damping factor dependent on

the difference in energy between the diagonal matrix elements for each configuration state

function.

〈ωw|ĤDFT −EDFT |ω′w′〉 = p1e
−p2∆E4

ww′ 〈ωw|Ĥ − EHF |ω′w′〉 (77)

Table 9 lists the values obtained by Grimme and Waletske for empirical parameters, opti-

mized for use with the Becke half-and-half hybrid exchange correlation functional (BHLYP)

density functional. This scaling factor reduces the double counting of dynamic electronic

Table 9 Optimized DFT/MRCI Parameters for the BHLYP Functional for Singlet and
Triplet States (63)

Multiplicity p1 p2 pJ p[0] α

singlet 0.619 3.27 0.510 0.595 0.106
triplet 0.619 3.27 0.493 - 0.056
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correlation by both the DFT correlation functional and the CI calculation, and it also en-

sures that only those states energetically close to each other can couple strongly, which

accounts for the bulk of the non-dynamic electronic correlation. No scaling is applied to

off-diagonal elements between states with the same spatial part.

Another advantage of the Grimme-Waletzke DFT/MRCI method is that the size of

the CI expansion can be significantly reduced, in some cases, by several orders of magnitude.

For relatively large systems with a large number of electrons, a full CI expansion can be

quite large, on the order of hundreds of millions of CSFs or more. However, because the

DFT calculation captures so much of the dynamic correlation, such large CI expansions

are unnecessary. Since only the non-dynamic correlation is desired from the CI calculation,

Grimme and Waletzke proposed a CSF selection procedure based upon the orbital energy

difference between occupied and virtual orbitals (63). By ignoring CSFs between states

that differ by more than some arbitrarily determined cutoff energy, δE, the size of the

CI expansion was reduced from several million or even billion CSFs, to several thousand

CSFs. Grimme and Waletzke’s implementation of their model was based upon a selected

CI algorithm, where individual CSFs can be selectively included or excluded from the CI

Hamiltonian.

Analysis of Off-diagonal Damping in the Effective DFT/MRCI Hamiltonian.

The scaling factor applied to the off-diagonal matrix elements in the hybrid CI Hamiltonian

serves to adjust the coupling between CSFs in the CI orbital expansion. This is analogous

to damping in a system of coupled mechanical or electrical oscillators. As the coupling

between modes is reduced, energy is removed from the system. This is not necessarily

the case in the hybrid DFT/MRCI model, however. This is because both the DFT and

the CI both model the dynamic correlation energy. Including both sources of this energy

results in an overestimate of the dynamic correlation energy in the hybrid CI Hamiltonian.

Introducing the off-diagonal scaling serves to damp out, or remove dynamic correlation

energy contribution from the CI calculation. By using a damping factor that depends on the

energy difference between CSFs, the hybrid model leaves interactions between degenerate or

nearly degenerate CSFs intact, which forms the bulk of the non-dynamic correlation energy

contributions. Interactions between CSFs widely separated in energy, which contribute
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almost solely to the dynamic correlation energy in the CI calculation are removed. The

hybrid DFT/MRCI model damps out the dynamic correlation energy contribution from the

CI calculation in an effort to remove the double contribution to this energy from both the

DFT and CI models.

The effect of the damping of off-diagonal matrix elements in the effective CI Hamil-

tonian in the Grimme and Waletzke approach can be examined through analysis of a few

simple systems with known analytical solutions. The effect of scaling on the eigenvalues,

in particular, on the degeneracy between eigenvalues can be illustrated by examining one

4-by-4 matrix arising from the coupling of angular momentum between two electrons. The

effect of variation of the two independent damping parameters, p1 and p2 on the absolute

error between the approximate eigenvalues and exact eigenvalues can be explored by exam-

ining a fictitious two level system. The off-diagonal damping inherent to the Grimme and

Waletzke approach can be generalized by the function

D
(

p1, p2, ω, w, ω′, w′
)

= p1e
−p2∆Eq

ww′ 〈ωw|Ĥ − EHF |ω′w′〉, (78)

Here, q was added as an additional parameter in the exponent in Equation 78 to

investigate the behavior of the damping as the exponent was varied. Examining p1, it is

apparent that it can range from zero to one. If p1 = 0, then the off-diagonal matrix elements

are eliminated, and one is left with only the diagonal matrix elements for the eigenvalues.

For p1 > 1, the CI Hamiltonian can become ill-conditioned, resulting in divergence in the

iterative diagonalization method. Regardless of the value of p2, p1 governs the damping

applied even when the two interacting CSFs are degenerate. Examining p2, it is apparent

that in the limit that p2 → 0, the damping is governed solely by the value of p1. For large

values of p2, the matrix element will be damped out unless the CSFs are degenerate, or

nearly so.

Effect of the Damping Term on Eigenvalue Degeneracies. The angular mo-

mentum coupling between two electrons is a simple problem that can be used to illustrate

the effect the exponent in Equation 78 on the eigenvalues of the system. In the uncoupled
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angular momentum basis, the operator Ŝ2 has the representation, in units of ~
2, of

















2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

















.

Diagonalizing this representation, one obtains

















2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0

















,

representing a triplet and singlet state. The three eigenvalues for the triplet state are

degenerate. Now, applying damping to the off-diagonal elements, of the form

f(a) = e−·aq

, (79)

one can examine the effect the damping has on the eigenvalues. With this damping applied

to the first matrix, the analytic form of the diagonalized representation is

















2 0 0 0

0 1+f(a) 0 0

0 0 1−f(a) 0

0 0 0 2

















.

Figure 4 shows the values of the eigenvalues 1 + f(a) and 1 − f(a) as a function of a. For

values of a < 0.5, the eigenvalues are approximately equal to their unperturbed values,

while for large values of a, they revert to the over damped case of zero off-diagonal ele-

ments. Varying the exponent affects the step-like nature of the transition between the over

damped eigenvalue, where the off-diagonal term is eliminated, and the approximate eigen-

value. Large exponents result in a more step-like transition, smaller exponents result in a

smoother transition. A large transition region is less desirable than a smaller one, because
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Figure 4 Eigenvalue Symmetry Breaking in Two-electron Spin Coupling Example
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one would like the region where the damped eigenvalues are approximately equal to the ex-

act eigenvalues over a large range in the parameter a. It is obvious the exponent necessarily

be positive, or severe matrix ill-conditioning could occur. If q = 0, the damping is indepen-

dent of the diagonal integrals of the interacting CSFs, which is undesirable. For q = 2, there

is almost no region where the eigenvalue degeneracies are approximately maintained. For

q = 4 and above, there exists a region where eigenvalue degeneracy is maintained, with a

rapid, step-like transition to over damping. It must be noted that the DFT/MRCI method

will only be able to reproduce eigenvalue degeneracy in an approximate fashion. This will

introduce error in electronic excitation energies, as states consisting of multiple, degenerate

eigenvalues will be split by some amount, resulting in an uncertainty in the energy of the

actual state. For spin-orbit calculations, which is one of the objectives of this research, this

degeneracy error can mask small spin-orbit splittings.

Effect of DFT/MRCI-style Damping on Eigenvalue Absolute Errors. Now

that some notion of the effect on the exponent q on the degeneracies of eigenvalues has

been investigated for a known system with analytical solutions, it is necessary to explore

the effects p1 and p2 have on the absolute error between the damped eigenvalue difference

and the exact, undamped eigenvalue difference for a two-level system. The two-level system
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Figure 5 Effect of Exponent on Eigenvalue

selected with matrix values chosen to represent the values found in a CI Hamiltonian, a

diagonally dominant, Hermitian matrix. The matrix, with Grimme and Waletzke damping

of the off-diagonal element, is of the form





a c0 · p1 · e−p2(a−b)4

c0 · p1 · e−p2(a−b)4 b



 .

Taking the difference between the analytical eigenvalues of this matrix, one gets

∆EDFT/MRCI = e−p2(a−b)4 ·
√

a2e−2p2(a−b)4 − 2abe−2p2(a−b)4 + b2e−2p2(a−b)4 + 4c20p
2
1.

Substituting in values typical of a diagonally dominant CI matrix, a = −2.0, b = −1.0,

c0 = −0.1, an exact value for the eigenvalue difference of 1.0198 is found. Defining the error

between the analytical result and the DFT/MRCI result as

E (p1, p2) = ∆Eexact − ∆EMR−DFT , (80)
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one can then explore the error in the p1 and p2 parameter space. Figure 6 shows a density

plot of the error on a 20 x 20 grid. As expected, the minimum absolute error occurs in

the undamped case, p1 = 1.0, p2 = 0.0, where the approximate eigenvalues are equal to the

analytical eigenvalues. The error in the density plot for this 2-by-2 matrix ranges from 0.0

to 19.8 milli units in the range examined in the plot. The absolute error remains lowest for

p1 > 0.3 and p2 < 1.2.

Figure 6 Density Plot of Absoulte Error Between Exact ∆E and Damped ∆E
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DFT/MRCI Model Implementation with COLUMBUS

This chapter will describe the theory, development, testing, and validation of the the

Multi-reference Density Functional Theory (MR-DFT) method within COLUMBUS, modified

from the original model developed by Grimme and Waletzke (63). For reference, the various

program steps involved in performing a CI calculation in COLUMBUS are

1. Compute atomic orbital integrals using ARGOS

2. Perform ROHF SCF calculation to obtain molecular orbitals using SCFPQ

3. Generate the distinct row table for the specified CI expansion using CIDRT

4. Transform the atomic orbit integrals into molecular orbital integrals using TRAN

5. Sort the molecular orbital integrals into their various loop contributions (all-internal

through four-external plus spin-orbit integrals) and compute repartitioned Hamilto-

nian core energy with CISRT

6. Perform the MR-SOCISD calculation using CIUDG

Density Functional Theory Interface to COLUMBUS. The similarity between the

basic structure of Kohn-Sham self-consistent density functional theory and the HF codes

was pointed out earlier in this chapter. This similarity is one reason for the success of DFT,

in that many of the computational algorithms designed for HF calculations could be reused.

COLUMBUS contains an ROHF code, SCFPQ, but no DFT capability.

The best approach would be to implement a fully self-consistent numerical integration

scheme within SCFPQ. In this way, correlation potential integrals, which are used in the

construction of the Kohn-Sham effective Fock matrix, and correlation energy, which are

used to obtain the total DFT energy, are obtained from the one- and two-electron densities

at each iteration. However, implementing, validating, and testing a new numerical matrix

element evaluation scheme was simply not possible within the time available.

Instead, a different approach was taken, consisting of designing and implementing

an interface between another well-documented, validated, and tested DFT code, allowing

the use of the DFT specific elements in the Fock matrix in the ROHF code SCFPQ within
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COLUMBUS, as well as in the molecular integral sorting program CISRT, so that the CIUDG

code could proceed using Kohn-Sham molecular orbitals and the correlation energy.

The basic elements that must be included in this interface between programs were

the one-electron correlation integrals, Vc and the correlation energies, Ec. The correlation

potential integral matrix elements are obtained by numerically integrating the functional

derivative of the correlation functional with respect to the density,

V c
ij =

〈

ϕi

∣

∣

∣

∣

δFc [ρ]

δρ

∣

∣

∣

∣

ϕj

〉

, (81)

where ϕi are atomic orbital basis functions. The correlation energy is obtained by numerical

integration of the correlation density functional over all space,

Ec =

∫

Fc [ρ] dτ. (82)

In order to obtain the correct Kohn-Sham molecular orbital coefficients, V xc
ij must be in-

cluded in the one-electron effective Fock matrix during the self-consistent iterations. Once

self-consistency is achieved, and the total DFT energy is computed, the correlation poten-

tial integrals are removed from the one-electron Fock matrix, and the correlation energy is

added. Failure to do this would yield the incorrect total energy. The one-electron contribu-

tion to the total Hartree-Fock energy is computed from the expression (127:176)

EHF
1 =

1

2

∑

µ

∑

ν

PµνH
core
µν , (83)

with

Hcore
µν =

〈

µ

∣

∣

∣

∣

∣

−1

2

N
∑

i=1

∇2 −
N
∑

i=1

M
∑

a=1

Za

ria

∣

∣

∣

∣

∣

ν

〉

. (84)

The one-electron charge density matrix, Pµν is given by (127:139)

Pµν = 2

N
2
∑

a

CµaC
∗
νa, (85)
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where Cµa are the basis contraction coefficients. However, in Kohn-Sham DFT, Hcore
µν is

given by

Hcore
µν =

〈

µ

∣

∣

∣

∣

∣

−1

2

N
∑

i=1

∇2 −
N
∑

i=1

M
∑

a=1

Za

ria
+ V c

µν

∣

∣

∣

∣

∣

ν

〉

, (86)

while the total DFT energy is given by

EKS
1 =

1

2

∑

µ

∑

ν

Pµν

(

Hcore
µν − V c

µν

)

+ Ec, (87)

with Ec defined in Equation 82. The main difference between the Hartree-Fock and Kohn-

Sham energies is that the Kohn-Sham total DFT energy is not obtained by contracting

the density matrix with the correlation potential integrals, but through integration of the

correlation density functional over all space. Thus, by extracting the correlation potential

integrals and correlation energy from a converged Kohn-Sham DFT calculation, one can

reproduce the density functional theory calculation in a Hartree-Fock program.

The first part of the interface required the extraction of the correlation potential

integrals and energies from NWChem. This was achieved by slightly modifying the xc getv.F

code, located in the \src\nwdft\xc directory in version 4.7. The correlation potentials and

energy are extracted from the calculation by setting the following variables

set "dft:idecomp" 2

anywhere in the NWChem input file, outside of any specific blocks. This forced NWChem to

separately compute the exchange energy and the correlation energy in a NWChem calculation,

rather than combine the two energies in a single value. Next, within the DFT block, the

following keywords enable the creation of the xcints file:

dft

print high

print "xc matrix"

end.

The code modifications to xc getv.F are placed after the numerical integration of the

density functional is performed in the call to subroutine grid quadv0, at line 332. The

modified code is
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if (oprint_xc_matrix)then

write(luout,*)’True Vxc’

call ga_print(g_truevxc)

write(luout,*)’EVB Exc energy = ’,

. 0.5d0*ga_ddot(g_dens(1),g_truevxc)

call ga_get(g_truevxc(1),1,nbf_ao,1,nbf_ao,

$ temp_vxc,nbf_ao)

open(unit=66,file=’xcints’,status=’replace’)

cevb write out exchange-correlation energy, can’t reproduce it

write(66,fmt=’(2f20.10)’) Exc(1), Exc(2)

write(66,fmt=’(i4)’) nbf_ao

do i_row = 1, nbf_ao

do j_column = 1, i_row

write(66,fmt=’(2i4,f15.9)’) i_row, j_column,

$ temp_vxc(i_row,j_column)

enddo

enddo

close(66)

endif.

The next step was to develop the input interface for the SCFPQ program to input data from

the xcints file and use the data in the appropriate places. The interface code was written

in Fortran 95 and is contained in the module file nwchem interface mod.F90. The interface

works in the following way:
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1. The COLUMBUS SCFPQ code must be compiled with the preprocessor definitions

-DEVB MULTIREFERENCE DFT and -D90 activated.

2. If the xcints file is not present, the SCFPQ code defaults to ROHF default behavior.

3. Before the first iteration of the SCF cycle, if the xcints file is present, it is opened,

and the contents, Ex, Ec, and V xc
ij are read into memory.

4. V c
ij are added to the one-electron Fock matrix, Hcore

ij for use in the SCF iterations.

The potentials are not included when the SCF energy is computed. Ec is added to

the total energy instead.

The design of this file-based interface was written to be general enough to facilitate the

introduction of any set of one-electron potentials to the Fock matrix. This could facilitate

further extensions to the SCFPQ code, for example, in adding a simple solvation model.

There is a potential for mismatch between SCFPQ and NWChem when using this file-based

interface, especially in open-shell atomic and molecular systems. For closed-shell systems,

NWChem uses a restricted Kohn-Sham algorithm, which interfaces nearly seamlessly into the

restricted Hartree-Fock algorithm used in SCFPQ. For open-shell systems, however, SCFPQ

uses a ROHF algorithm, while NWChem uses an unrestricted Kohn-Sham algorithm. In the

unrestricted case, the α and β orbitals are no longer constrained to remain degenerate, as is

the case in the restricted and restricted-open algorithms. The correlation potential integrals

may still be used in the file-based interface method, due to the fact that the correlation po-

tential integral matrix are integrals over basis functions, not molecular orbitals. However,

the resulting molecular orbital energies, coefficients, and the total energy obtained from the

unrestricted Kohn-Sham calculation and the modified ROHF method will necessarily differ.

In most cases examined, the discrepancy in the total DFT energy was small. This dis-

crepancy could be eliminated by implementing an in situ correlation numerical integration

capability with SCFPQ.

Another mismatch is in the normalization of the atomic orbital integrals in the NWChem

and SCFPQ programs. NWChem normalizes atomic orbital integrals to unity, while ARGOS, the

one- and two-electron integral program in the COLUMBUS program normalizes atomic orbitals

to a value dependent on the angular momentum value of the shell the atomic orbital is in.
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For example, for a Gaussian orbital of the form

xmynzle−αr2

, (88)

where the orbital angular momentum, L for the atomic orbital is given by m+n+ l, then the

COLUMBUS atomic orbital normalization factor is (2m−1)!!(2n−1)!!(2l−1)!!. The (...)!! is the

odd factorial, defined by (2m − 1)!! = (2m − 1)(2m − 2)...(1). This normalization ensures

that orbitals in the same shell have the same normalization, and is identical to NWChem

normalization for shells with angular momentum L < 2. A normalization conversion had to

be incorporated into SCFPQ to ensure that the correlation potential integral normalization

was consistent. This was accomplished by multiplying the NWChem correlation potential

integrals by the COLUMBUS normalization factor.

Although both programs can exploit Abelian point group symmetry, each program

approaches symmetry in a slightly different fashion. NWChem uses a projection operator

approach, projecting out the various irreducible representations from the state vector. On

the other hand, SCFPQ explicitly works in a symmetry-adapted atomic orbital basis. In his

basis, the Fock matrix is block diagonal, and there is no symmetry contamination in the

state vector. Developing a one-to-one interface between the two programs that incorporated

point group symmetry as well proved to be too complicated to accomplish in the scope of

this research. As a result, all interface calculations must be performed in the C1 Abelian

point group at this time.

DFT Interface Validation. Table 10 lists the total DFT energies produced

from both NWChem and the modified version of SCFPQ for atomic and diatomic systems over

a range of ground state multiplicities. The doublet and triplet systems are open-shell atoms,

and are calculated using an unrestricted Kohn-Sham DFT treatment in NWChem, but with

the modified ROHF method described above in SCFPQ.

Open-shell atomic cases were calculated in SCFPQ using a set of high-spin open-shell

coefficients, but with the correlation potential integrals and energy from an unrestricted

Kohn-Sham DFT calculation. As expected, this mismatch introduces a slight discrepancy

into the DFT energy produced by SCFPQ. The discrepancy between the NWChem and SCFPQ
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DFT results for the closed-shell molecules is due to a slight geometry mismatch between the

two calculations. This mismatch is a result of a different conversion factor between bohrs

and angstroms being used by the two programs. The mismatch produces a very slight

difference in nuclear repulsion energies of the molecules. This small bond length variation

propagates into all one- and two-electron integrals, resulting in the 10−4 to 10−5 Hartree

variation in DFT energies between the two programs.

Table 10 SCFPQ + Vxc and NWChem DFT Energies, CPBE96 Correlation Functional

Modified
NWChem SCFPQ

Basis Total Total
Molecule State Set energy(au) Energy(au)

He 1S cc-pVDZ -2.8974314 -2.8974314
He 1S cc-pVTZ -2.9033415 -2.9033415
Be 1S cc-pVDZ -14.6581093 -14.6581092
Be 1S cc-pVTZ -14.6587689 -14.6587689
Ne 1S cc-pVDZ -128.8418547 -128.8418547

Li 2S cc-pVDZ -7.4839186 -7.4839114
Li 2S cc-pVTZ -7.4842048 -7.4841740
B 2P cc-pVDZ -24.6431084 -24.6397244
C 3P cc-pVDZ -37.8316781 -37.8276148
N 4S cc-pVDZ -54.5721139 -54.5695753
O 3P cc-pVDZ -75.0289806 -75.0230910
F 2P cc-pVDZ -99.6694840 -99.6653580
Br 2P 3

2

cc-pVDZ +

ECP -153.8323299 -153.8282959
U4+ 3H4 cc-pVDZ +

ECP -213.4131032 -213.3284656
U5+ 2F 5

2

cc-pVDZ +

ECP -211.6726845 -211.6114783

H2
1S cc-pVDZ -1.1738196 -1.1738196

H2
1S cc-pVTZ -1.1768602 -1.1768601

CO 1Σ+ cc-pVTZ -113.2326231 -113.2326535
Be2

1Σ+
g cc-pVDZ -29.3137214 -29.3137193

BF 1Σ+

0 cc-pVTZ+
ECP -27.0113630 -27.0113971

UO2+

2
1Σ+

0g cc-pVDZ +

ECP -247.2848488 -247.2849113
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Correlation Energy in the Repartitioned Hamiltonian. Once a set of pseudo-Kohn-

Sham orbitals is generated through the file-based interface between NWChem and SCFPQ,

the distinct row table for the CI calculation is generated using the CIDRT program, and

the integrals over atomic orbitals are transformed into a molecular orbital basis using the

TRAN program. The only step remaining before actually performing the CI calculation is

to sort the molecular integrals into all-internal, one-external, two-external, three-external,

and four-external orbital index sets and compute the reference energy of the repartitioned

Hamiltionian. This sorting is accomplished by the CISRT program.

The critical component in an DFT/MRCI calculation is the addition of the correlation

energy needs to the reference energy. This is accomplished through the file-based interface,

xcints. In a similar fashion to the modified ROHF program, the modified CISRT program

performs the following:

1. The COLUMBUS CISRT code must be compiled with the preprocessor definitions

-DEVB MULTIREFERENCE DFT and -D90.

2. If the xcints file is not present, the CISRT code defaults to its default behavior.

3. If the xcints file is present, it is opened, and the contents, Ex, Ec are read into

memory.

4. Ec is added to the reference energy of the repartitioned Hamiltonian.

This final step adds the correlation energy to the reference energy, effectively offset-

ting the energies produced in the CIUDG program by Ec. For a single root, ground state

calculation, with zero excitations from the reference space, this reproduces the DFT energy

result obtained in the modified SCFPQ program exactly. A more ideal approach would be to

recompute the correlation energy contribution based on the orbital density for each refer-

ence. This approach would allow a more reasonable approximation to the correlation energy

for each reference, rather than use the correlation energy obtained from the ground state

density and applied to all reference configurations, which may give rise to vastly different

densities.
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CIUDG Based DFT/MRCI. The third and final step in the implementation of the

DFT/MRCI method required modification of the CI program, CIUDG, in order to implement

the damping of the off-diagonal CI matrix elements.

Modifications to the Grimme and Waletzke DFT/MRCI Model. In their

paper (63), Grimme and Waletzke describe an approach to the development of a hybrid

DFT-CISD model. Their approach, based on a selected-CI code, involved modification of

both the diagonal and off-diagonal CI Hamiltonian matrix elements. The fact that they

used a selected-CI code enabled them to select which CSFs to include in their CI expansion.

The DFT/MRCI model and their CSF selection criteria allowed them to drastically reduce

the size of the CI expansions necessary to examine systems of interest. The rationale behind

this is the fact that the DFT calculation captures a large fraction of the dynamic correlation

energy, and so only a modest CI expansion is necessary to model the non-dynamic correlation

contribution to the energy.

The approach they described in their paper involved a hybrid correlation functional,

half exact HF exchange and half Becke 1988 (11) exchange functional, coupled with the

Lee, Yang, and Parr (81) GGA correlation functional. Their resulting DFT/MRCI model

contained five unknown parameters, shown in chapter two, equations 75, 76, and 77.

In this model, however, only the off diagonal matrix element damping was retained.

The rationale behind this was that modifications to the diagonal CI matrix elements were

necessary due to the use of an approximate, local exchange functional. Using a correlation-

only functional and eliminating the modifications to the diagonal matrix elements reduced

the number of empirical damping parameters to two. However, using the exact Hartree-

Fock exchange operator with Kohn-Sham orbitals does not reproduce the exact exchange

energy. Most successful hybrid density functionals mix exact Hartree-Fock exchange for the

non-local contribution with a portion of local exchange energy obtained from the exchange

functional. Perdew and Ernzerhof suggest a rationale for mixing 15% to 30% exact Hartree-

Fock exchange with 70% to 85% local density functional approximation (102). Grimme

and Waletzke use the BHLYP density functional approximation, which mixes 50% exact

exchange with 50% Becke exchange density functional approximation. A popular and accu-

rate hybrid density functional, Becke Three Parameter Hybrid Density Functional (B3LYP)
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mixes 20% Hartree-Fock exchange with 72% Becke exchange. Using a correlation only func-

tional and 100% exact Hartree-Fock exchange simplifies the treatment of the diagonal CI

matrix elements, and allows a more flexible treatment of various spin multiplicities, without

resorting to additional parameterization of the method, in exchange for some error in the

exchange energy contribution.

Full advantage was taken of the loop-driven approach in CIUDG in implementing the

damping of the off-diagonal matrix elements. By taking care to identify the individual

CSFs participating in a particular one- or two-body loop interaction within Configuration

Interaction Unitary Diagonalize (CIUDG), and applying the scaling appropriately based on

Equation 77, the overall scaling factor for each off-diagonal element can be constructed in a

factored form. In the GUGA approach to CI calculations, the various contributions to the

CI Hamiltonian are constructed from the product of individual segment values within the

loop (120:73) (124).

Off-diagonal matrix element scaling is introduced through a scaling factor, ρ (i, j)

applied to both one- and two-body segments, defined by

ρ (i, j) = p1e
−p2∆E4

ij , (89)

where ∆Eij is the diagonal integral difference between CSF i and CSF j. This results in

new one- and two body generator matrix elements,

〈

m′ |Eij |m
〉

=
∏

k=(i,j)

ρ (i, j)ω
(

Qk; d
′
kdk,∆bk, bk

)

(90)

and
〈

m′ |eij,kl|m
〉

=
∏

p∈S1

ρ (i, j)ω (Tp, bp)
∑

x=0,1

∏

p∈S2

ωx (Tp, bp) . (91)

CIUDG based DFT/MRCI Model Validation. The critical step in implementing

the method was to correctly identify the interacting CSFs in each loop contribution. One

of the efficiencies of the loop-driven approach to CI calculations in the GUGA approach is a

result of the compact nature of the DRT. Large CI expansions can be compactly described

with compact DRT tables without having to form and store an index vector of the same
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dimension as the CI expansion. Such compactness is desirable in very large CI expansions,

as forming and storing an index vector of millions, or billions of elements long is highly

inefficient.

The loop-driven approach indexes loop contributions to internal walks, which are all

the walks through the DRT of the occupied reference space. The regular structure of the

external space (see Figure 1) is exploited for code efficiency. These internal walks terminate

at the beginning of the external space on either Z, Y, X, or W vertices. The CIUDG code is

organized according to the types of loop contributions, based on the excitation level with

respect to the internal space. A maximum of two orbitals can contribute to one-body loop

types, while a maximum of four orbitals can contribute to two-body loops. Calculations

proceed in order, computing the following loop type contributions to the CI Hamiltonian:

1. Four-external loops – All four orbitals contributing to this loop are in the external

(virtual orbital) space. The structure of these matrix element contributions to the

CI Hamiltonian can be either a single matrix element, a row or column of matrix

elements, or a m x m block of matrix elements. There are 16 separate locations in the

code that perform this type of interaction, based upon the symmetry of the bra and

ket CSFs.

2. Three-external loops – One orbital is in the internal space, three orbitals are in

the external space. The structure of these matrix element contributions to the CI

Hamiltonian can be either a row or column of matrix elements, or a m x m block of

matrix elements. There are 9 separate types of this interaction in the code.

3. Two-external loops – Two orbitals are in the internal space, two orbitals are in the

external space. The vast majority of these matrix element contributions to the CI

Hamiltonian are in the form of m x m block of matrix elements, with only one row

or column vector contribution. There are 20 separate types of this interaction in the

code.

4. One-external loops – Three orbitals are in the internal space, and one orbital is in

the external space. All these contributions are either row or column vectors in the CI

Hamiltonian. There are 6 types of this loop interaction in the code.
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5. All-internal loops – All four orbitals in the interaction are in the internal space.

There are 4 types of this loop interaction in the code, with the contributions appearing

as either a single CI matrix element, or a co-diagonal vector.

6. Spin-orbit integral loops – Since the spin-orbit operator is a one-body operator,

there can only be two- and one-external loop types of this, in addition to all-internal

spin orbit loops. These interactions were not modified in this implementation.

For each loop type, the CSFs involved was based upon the sum of the CSF offset for

each internal walk and the CSF offset for the number of CSFs involved in the interaction.

Each loop contribution eventually ends with a Basic Linear Algebra System (BLAS) sub-

routine call to update the sigma vector from the CI vector. This update is usually of the

form

~σ = Ĥ · ~c. (92)

The CSFs involved in the update were identified through the CSFs involved in both the ~σ

vector and ~c vector, as the Hamiltonian, Ĥ is never explicitly constructed. In the CIUDG

code, both the sigma and CI vectors are indirectly indexed, with locations in the vectors

defined and controlled as offsets to the starting CSF for the internal walks in the interaction.

The internal walks are organized according to the Z, Y, X, or W walk vertex upon which

they terminate. Z and Y walks are listed first, so Z walks always begin at CSF number 1.

The starting CSFs of the Y, X, and W walks are also stored, but only for the internal walks.

So the starting CSFs for the sigma and CI vectors in an all-internal interaction between

two Y walks would occur at the internal Y walk start CSF. The range of CSFs involved

in the interaction is then deduced by the type of BLAS subroutine call. In the YY walk

all-internal interaction example, the sigma vector update is performed by the pair of BLAS

subroutine calls

call daxpy(ny,hint,ciket(nmb2+1),1,sigmabra(nmb1+1),1)

call daxpy(ny,hint,cibra(nmb1+1),1,sigmaket(nmb2+1),1).

All sigma vectors get updated in this pairwise fashion, which takes advantage of the

Hermitian nature of the CI Hamiltonian to update the sigma vector in two places, one
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update due to the lower triangle of the CI Hamiltonian, the other due to the contribution

from the upper triangle of the Hamiltonian. In the YY interaction example, the daxpy

subroutine call performs the following operation:

~y = a ∗ ~x+ ~y, (93)

where a is a scalar, ~x and ~y are both vectors. In the code segment above, the dimension

of these vectors are ny and the offsets to the internal Y walk starting CSFs for each are

nmb2+1 and nmb1+1. The scalar a is hint. In this example, hint is the CI Hamiltonian

matrix element, and the shape of this interaction in the Hamiltonian is a co-diagonal vector.

Unrolling this loop so that off-diagonal matrix element scaling can occur, along with the

update of the sigma vector is performed by the following code,

hint_original = hint

do temp=1, ny

call scale_scalar(cist(2)+nmb1+temp, &

cist(1)+nmb2+temp, hint)

sigmabra(nmb1+temp)=sigmabra(nmb1+temp)+&

hint*ciket(nmb2+temp)

sigmaket(nmb2+temp)=sigmaket(nmb2+temp)+&

hint*cibra(nmb1+temp)

hint = hint_original

end do.

Hence, the indices of the Hamiltonian matrix element referred to in the code by hint

is given by the sum of the Y walk starting CSF in both the CI vector and the sigma vector,
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and the offset from these starting CSFs. For the CI vector, this sum is cist(1)+nmb2+temp

while for the sigma vector, the sum is cist(2)+nmb1+temp.

Careful analysis along these lines of all the loop BLAS calls allowed reconstruction of

the absolute CSFs involved in each interaction from the various offsets.

From the BLAS routines used to update the sigma vector, the possible types of CI

matrix elements are:

1. Scalar – A single CI matrix element contributes to the ~σ update.

2. Vector – Either a row or column of matrix elements contribute to the ~σ update. These

vectors are either n x 1 or 1 x m in size.

3. Block – An n x n block of matrix elements contributes to the ~σ update.

Three separate scaling routines were written to account for each case listed above.

For the block matrices and vectors, there were several locations in the CIUDG code

where significant optimization of the ~σ vector update occurs. In these areas, it was not

possible to identify what the CSF locations of the matrix elements were in general expansion.

These cases occur in the CIUDG code where the CI vector gets either symmetrically or

asymmetrically expanded into an n x n matrix. In these cases, the update of the sigma

vector no longer takes the form of Equation 92. Instead, the sigma vector gets updated

in a complicated matrix/matrix product fashion. For these loop types, involving a small

number of external orbitals, with one, two, or three external basis functions, the optimization

could be unrolled, and the sigma update reformulated in terms of a matrix/vector product,

where identification of the CSFs is then possible. However, no general pattern arose in the

assignment of CSFs to matrix elements.

Because of this non-unique usage of the two-electron molecular integrals in the update

of the σ vector, the implementation of the Grimme and Waletzke DFT/MRCI approach

required slight modification in the GUGA based CI code . In these cases, which arise in

two of the six one-external loops, and six of the twenty two-external loop types, a different

approach was taken. For these blocks of matrix elements, if the dimension of the block is

greater than one, a single scaling factor is applied to the entire block of matrix elements.

Three scaling choices are possible, and they are selectable in the input file via a logical
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flag: minimum scaling, maximum scaling, or average scaling. In these cases, the ranges

of CSFs in the block can be deduced in general, however, the matrix elements within the

block are not uniquely used, which precludes damping them individually. Instead, based

on the CSF range, and the flag chosen in the input file, the entire block of matrix elements

gets damped by the same factor. This is a more efficient method for damping these highly

optimized cases, and is necessary for two reasons. First, in these blocks, matrix elements

are not used uniquely in the block. The same integral contributes to more than one matrix

element, precluding individual, unique damping. Second, because of the optimization, linear

combinations of integrals contribute to the block, with each integral contribution within a

linear combination possibly having differing CSF indices. Block damping the entire group of

matrix elements by a single factor, by either the maximum, minimum, or average damping

factor based on the CSF range of the block was the way that code efficiency was preserved.

Additionally, it is simply not feasible to single out specific CSFs for inclusion in the

CI expansion in the loop-driven, GUGA-based CI code, CIUDG. However, reduction in the

size of the CI expansion is one of the most important factors in the Grimme and Waletzke

model. Rather than selectively include CSFs in the expansion, as Grimme and Waletzke

did using their CI code, expansion size in CIUDG is limited by freezing orbitals in the virtual

space, using the rationale that high energy virtual orbitals contribute very little to the

non-dynamic correlation energy.

Testing the DFT/MRCI Model Implementation within CIUDG. Using the fact that

the absolute CSFs of both the sigma and CI vectors involved in the interactions could be

reconstructed, an internal consistency check was coded into CIUDG. This check worked by

constructing the Hamiltonian from the loop contributions and their absolute CSFs. This

Hamiltonian was then diagonalized, and the eigenvalues were compared to the eigenvalues

obtained from the iterative Davidson diagonalization of the subspace matrix. Incorrect

indexing of the CSFs resulted in incorrectly placing the matrix element within the consis-

tency check Hamiltonian, and resulted in eigenvalues that did not agree with those obtained

iteratively from the subspace matrix.

The CI program never explicitly generates the Hamiltonian, instead, it generates so-

called matrix-vector products, Ĥ~v directly, where ~v are the reference vectors. The subspace
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matrix is generated by forming the product ~vĤ~v. In the first iteration, the start vectors

are constructed by placing a 1 in the CSF location for that particular vector, with zeros

elsewhere. Starting vectors can be generated using Z walks, or Z and Y walks, defining the

set of reference vectors upon which to generate the subspace matrix. The subspace matrix

and CI Hamiltonian are equal in this case during the first iteration. As the starting vectors

converge in subsequent iterations, this is no longer true.

This behavior of the subspace matrix was exploited for testing purposes, and code

was added to generate start vectors for all Z, Y, W, and W walks (accessed by setting

ISTRT=3, IVMODE=1 in the ciudgin namelist input file). As explained above, this allowed

construction of a subspace matrix that corresponded to the exact CI Hamiltonian. This

exact Hamiltonian was used as a reference to aid in the determination of absolute CSF

locations.

A series of very small test systems were used to generate and test the determination

of absolute CSF assignments. By setting p1 = 1.0 and p2 = 0.0, the off-diagonal elements

were unaffected, and the consistency check Hamiltonian and the exact Hamiltonian could

be compared, facilitating debugging of the DFT/MRCI code. A series of systems with very

small basis sets were used to facilitate this, so that the entire CI Hamiltonian could be

visualized. The atomic systems used to perform this testing, along with their basis sets and

point group symmetry are listed in Table 11.
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Table 11 DFT/MRCI Testing Cases

Atom Multiplicity Basis Point-group CI CI
symmetry Irrep dimension

He singlet [4s1p]/(3s1p) C1 A 15
He singlet [4s1p]/(3s1p) D2h Ag 6
He singlet [4s1p]/(3s1p) D2h B1u 2
He triplet [4s1p]/(3s1p) C1 A 10
Li doublet [8s3p]/(2s1p) C1 A 32
Li doublet [8s3p]/(2s1p) Ci Ag 20
Li doublet [8s3p]/(2s1p) Ci Au 12
Li doublet [8s3p]/(2s1p) C2v A1 12
Li doublet [8s3p]/(2s1p) D2h Ag 8
Li doublet [8s3p]/(2s1p) D2h B1g 4
Li doublet [8s3p]/(2s1p) D2h B1u 4
Be singlet [9s4p]/(3s2p) C1 A 105
Be singlet [9s3p]/(3s1p) D2h Ag 15
Be singlet [9s3p]/(3s1p) D2h B1g 4
Be singlet [9s3p]/(3s1p) D2h B1u 6
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The total number of directly tested loops in the above cases is given in Table 12.

The loops involving the block scaling technique described above could not be tested in this

fashion, and were not included in the loop totals. Two one-external loops and six two-

external loops used this block-scaling method. Direct testing means that the loops were

directly involved in the CI calculation.

Based on the type of BLAS calls involved in the directly tested loops, a number of

remaining, untested loops could be inferred to be scaling correctly, since they involve the

same BLAS subroutine calls as a directly tested loop. Recall the off-diagonal damping de-

pends only on the CSFs of the matrix element, and these CSFs are determined by the shape

of the CI Hamiltonian block, which is determined by examination of the BLAS subroutine

call. A loop is considered indirectly tested if it consists of the same pair of BLAS subroutine

calls as a directly tested loop.

Table 12 Testing Results

Loop-type Number Number Total number Percent Total
directly indirectly number of direct +
tested tested loops indirect

All-internal 3 1 4 100%
One-external 3 1 4 100%
Two-external 7 5 14 86%
Three-external 4 5 9 100%
Four-external 8 0 16 50%

Total 25 12 66 79%

Interestingly, cases which exposed the remaining untested loops could not be found by

changing the multiplicity or the symmetry in the above cases. The only way to expose these

untested loops was to increase the size of the basis set. However, increasing the size of the

basis set made it nearly impossible to examine the CI matrix from the subspace projection,

it became too large.

Based on the results listed in Table 12, the operation of the majority of the DFT/MRCI

code was verified to be correct. Following the testing of the developed code, application of
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the DFT/MRCI model to various atomic and molecular systems to assess the performance

could commence.

Using the COLUMBUS DFT/MRCI Model

DFT/MRCI Model Input Control. Input to the COLUMBUS-based DFT/MRCI

model is contained in the input to the CIUDG program. Activation of the DFT/MRCI code

and control of its various features is accomplished by a series of flags, added to the name

list input file for CIUDG, ciudgin. The default behavior of the CIUDG code is to not perform

DFT/MRCI calculations. DFT/MRCI capability has to be specifically activated in order

to perform a DFT/MRCI calculation. As in was the case with the modified SCFPQ and

CISRT programs, in order to perform a DFT/MRCI calculation, the CIUDG program must

be compiled with the preprocessor definitions -DEVB MULTIREFERENCE DFT and -D90. The

following input flags, along with example values, are possible in the ciudgin file to control

the behavior of the DFT/MRCI code:

p1 = 0.96

p2 = 2.5

scale_power = 4

od_allint_damp = .t.

od_1ext_damp = .t.

od_2ext_damp = .t.

od_3ext_damp = .t.

od_4ext_damp = .t.

coarse_scaling = ’minimum’

dump_diag = .f.

debug_file = .f.

loop_track = .f.

The first three input flags, control the off-diagonal damping of the CI matrix elements. The

scale_power flag sets the exponent on the ∆E term in Equation 77. The four od_*_damp

flags activate the damping of the various loop contributions. Each individual loop type

(all-internal, one-external, etc.) can be selectively damped. The next flag, coarse_scaling
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controls the block scaling in the eight optimized loop interactions discussed earlier. Three

choices exist for this flag: ’minimum’, which scales the entire block by the minimum damping

factor, ’average’, which damps the entire block of loop interactions by the average damping

factor for the entire block, and ’maximum’, which applies the largest damping factor in

the block to the entire block of matrix elements. The final three flags are for debugging.

Diagonal CSF integrals can be dumped to a human readable file by setting dump_diag,

while debug_file controls dumping of verbose information about the off-diagonal scaling

to a human readable text file, and loop_track identifies which loop types, as indexed by

an arbitrary numeric label, are being accessed in a calculation.

Usage. The procedure for using the COLUMBUS-based DFT/MRCI model is

listed below. Before proceeding, a version of NWChem with the modifications listed earlier

must be compiled in order to extract Vc and Ec from a DFT calculation. A version of

COLUMBUS with the DFT/MRCI model needs to be compiled with the preprocessor flags

described earlier enabled. The procedure below describes how to use the DFT/MRCI model

using a DFT correlation functional and 100% HF exchange. This implementation of the

DFT/MRCI model can not be used with a hybrid density functional. Using a mixture

of HF and approximate density functional exchange, in the implementation described by

Grimme and Waletzke, requires additional modifications to the diagonal matrix elements,

which introduce spin-multiplicity limitations to the model.

The first thing that needs to be done is to determine useful values for the two free

parameters in the damping term, Equation 78. Appendix B lists the atomic and molecular

systems used to determine the two free damping parameters p1 and p2 in Equation 78, for

this research. A generic procedure for determining the damping parameters is:

1. Perform FCI calculation on the atomic or molecular system used in the training set.

Compute both the ground state and at least one excited state of the same multiplicity.

Be sure to use C1 point group symmetry. GAMESS (95) (98) was used in this research

to perform the FCI calculations.

2. Using 100% HF exchange and an approximate LDA, GGA, or meta-GGA correlation

functional, perform a DFT calculation on the atomic or molecular system used in the
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training set in order to extract Ec and Vc. Be sure to use C1 point group symmetry.

The external files overlap and xcints are generated by keywords in the NWChem input

file described in a previous section.

3. Setting a particular value of p1 and p2 in the CIUDG input control specified in the next

section, run the following series of COLUMBUS programs (either individually, or via a

script):

(a) Generate the atomic orbital integrals using ARGOS. Take care to ensure that the

symmetry adapted linear combinations of atomic orbital matrices in the ARGOS

input file match the ordering used in NWChem. NWChem orders the various orbital

shells from lowest to highest ml value, while the symmetry-adapted linear com-

bination matrices generated automatically by either IARGOS or CIML arbitrarily

order the atomic orbitals.

(b) Run the SCFPQ program. Be sure the files xcints and overlap have been gen-

erated by NWChem. If performing an open-shell calculation, use the unrestricted

DFT option in NWChem, and use either the average of configurations or high-

spin open shell coefficients in SCFPQ. The average of configuration open-shell

coefficients, along with fractional occupation in open-shell SCFPQ calculations

better preserve the symmetry of orbitals within the same shell. NWChem does

not typically perform spherically averaged open-shell calculations in ROHF and

unrestricted DFT

(c) Check the total SCF energy from SCFPQ and NWChem to ensure the DFT ener-

gies are in agreement, especially for closed shell cases. Discrepancies here arise

typically from an inconsistency in the ordering of the atomic orbital basis in the

Fock matrix between the ARGOS and NWChem programs.

(d) Examine the orbital energies in the SCFPQ output. Determine an acceptable vir-

tual orbital cutoff point based on orbital energies. In this research, an acceptable

cutoff was found to range from 30 to 40 eV above the highest occupied molecular

orbital. Take care not to freeze orbitals in such a way that symmetry is broken.

For example, this can happen if only two of three p degenerate orbitals are frozen

in an atomic calculation.
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(e) Generate the DRT using CIDRT, freezing virtual orbitals above the cutoff orbital

energy in order to limit the size of the CI expansion. This may require several

iterations to find a good balance between CI expansion size and DFT/MRCI

accuracy. In the GUGA direct CI method, loop contributions are formed di-

rectly from one- and two-electron integrals, bypassing explicit construction of

the Hamiltonian and CSFs. Limited selection of interacting CSFs can be ac-

complished in the GUGA approach either through removing specific levels in the

DRT, removing specific walks from the DRT, or by freezing virtual orbitals in

the external portion of the graph.

(f) Transform the atomic orbital integrals to molecular orbital integrals using TRAN.

(g) Sort the molecular integrals into internal, external and frozen orbitals and com-

pute the repartitioned Hamiltonian reference energy with CISRT. Ensure the file

xcints is present in order to incorporate the DFT Ec energy into the reference

energy.

(h) Specify the DFT/MRCI specific input in the CIUDG input file. At a minimum,

p1 and p2 must be specified. By default, coarse scaling is selected to be set

to .minimum.. This forces block scaling to be performed using the minimum

damping factor over the entire block of integrals. This was done in order to avoid

situations where overly large scaling gets applied to important loop contributions.

The drawback is the fact that some loop contributions may not be scaled enough

using this scheme.

4. Repeat the COLUMBUS steps above, changing p1 and p2. In this research, a script was

used to automatically vary the damping parameters, with p1 ranging from 0.0 to 1.0,

and p2 ranging from 0.0 to 10.0, both over 20 steps. The excitation energy between

the ground and excited state was computed at each value of p1 and p2, and dumped

to a file to facilitate the plotting and analysis contained in Appendix B.

5. Compute the difference between the FCI and DFT/MRCI excitation energies for each

pair of p1 and p2 values computed above.

6. Look for a region in the density plot (Figure 7) of absolute excitation energy error

between the FCI and DFT/MRCI that is a minimum, and where p1 and p2 decouple.
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This fixes the value of p1. The value of p2 is selected from an asymptotically flat region

of absolute error along this value of p1. In this research, using 100% HF exchange

and the PBE 1996 GGA correlation functional, with a selection of training systems

spanning the first two rows of the periodic table, the damping parameters decoupled

at p1 = 0.96. The absolute error for all values of p2 > 2.0 was roughly constant for

p1 = 0.96. These considerations led to the selection of p1 = 0.96 and p2 = 2.5 for this

research using 100% HF exchange and PBE 1996 GGA correlation functional.

All DFT and TDDFT calculations were performed using the Perdew Burke and Ernz-

erhof pure correlation functional (CPBE96) correlation functional. Currently, NWChem can

not do TDDFT calculations using meta-GGA functionals, limiting this analysis to at most

GGA functionals. A small set of test atoms and molecules was selected and used to deter-

mine a set of damping parameters that produce acceptable error for all systems.

Error was defined as the difference between the DFT/MRCI excitation energy and

the FCI excitation energy for the same electronic transition. Both DFT/MRCI and FCI

calculations used the same basis set and/or effective core potential.

Appendix B lists the test atomic and molecular systems, the FCI calculations results,

and density plots for the absolute error for each systems used to determine the universal

damping parameters for the CPBE96 correlation functional. The test set consists of both

double- and triple-ζ quality basis sets for atoms and diatomics. Ground state spin multiplic-

ities ranges from singlet through quartet, and cover both closed- and open-shell systems,

with open s- and p-shells. The original method proposed by Grimme and Waletzke was

limited to singlet and triplet states. The spin-orbit extension to the original DFT/MRCI

method developed by Kleinschmidt et al also contained this spin-multiplicity limitation.

Figure 7 shows a density plot of this averaged data on the p1/p2 grid.

A clear band of minimum error exists in the density plot shown in Figure 7, ranging

over p1 values of roughly 0.8 to 0.96 and over p2 values from 0 through 10. The band

stabilizes and is essentially constant for values of p1 ≈ 0.96 and p2 > 2.0. The global

minimum averaged, normalized error occurred in the combined data at the values p1 = 0.85,

p2 = 0.5. The stabilization of the minimum error band seems to indicate an asymptotic

region where the damping parameters produce decent result across the range of test cases.
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Figure 7 DFT/MRCI Averaged, Absolute Error with Respect to Full Configuration In-
teraction Results
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Subsequent DFT/MRCI calculations were performed using the damping parameters p1 =

0.96, p2 = 2.5, located in the asymptotic region of the minimum absolute error band.

These values were chosen because they produced smaller degeneracy errors in the validation

systems than did the global minimum values, while producing roughly the same relative

error with experiment.

In the following atomic and molecular systems used to demonstrate the capabilities of

this implementation of the DFT/MRCI model, vertical excitation energies relative to the

ground state are listed in wave numbers. These vertical transition energies were computed

only at the bond length listed. In parentheses next to the excitation energy is the relative

error in percent with experiment for that excitation. Positive relative errors reflect overesti-

mation of the excitation energy, while negative relative errors underestimate the excitation

energy. Also listed is the RMS error associated with calculated excitation energies over all

states computed. For DFT/MRCI results computed using this model, errors in the degen-

eracy of states necessitated the computation of the average excitation energy, along with

the standard deviation in the excitation energy. For states with degeneracies in both the

ground and excited states (states with L > 0 for atoms or Λ > 0 for linear molecules), the

respective errors in each state were combined statistically to yield the total error for the

corresponding transition. For spin-orbit calculations, states are identified via their principle

LS component.

Results and Analysis

A modified DFT/MRCI model, based upon Grimme and Waletzke’s method has been

implemented and tested within the COLUMBUS program. Using the procedure described in

the previous section, along with the two free damping parameters obtained, the DFT/MRCI

model was applied to several atomic and molecular systems.

Carbon Monoxide. Carbon monoxide was chosen in order to compare the perfor-

mance of this implementation of the DFT/MRCI model with that of Grimme and Waletzke.

Spin-orbit effects were not considered in these calculations. A cc-pVTZ quality basis set was

used, in order to duplicate the results obtained by Grimme and Waletzke (63) as closely as

possible in this implementation. DFT/MRCI and TDDFT calculations were performed at
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a bond length 1.1261 Å, obtained from the National Institute of Standards and Technology

(NIST) Computational Chemistry Comparison and Benchmark DataBase (CCCBDB) (1).

This bond length was generated from a DFT geometry optimization using a cc-pVTZ quality

basis set and the hybrid B3LYP GGA correlation density functional.

Table 13 lists the DFT/MRCI, TDDFT, and experimental results for the carbon

monoxide molecule. The first two σ orbitals, corresponding to the carbon and oxygen 1s

orbitals, were frozen, as were the 44 highest energy virtual orbitals. The Kohn-Sham orbital

energy difference between the Highest Occupied Molecular Orbital (HOMO) and the first

frozen virtual orbital was roughly 38 eV. All reference configurations from a Complete Active

Space (CAS) over the carbon and oxygen 2s and 2p orbitals was used in this calculation,

corresponding to 10 active electrons in 8 orbitals. The CI expansion sizes resulting from

this active space were 87,612 singlet CSFs and 145,620 triplet CSFs. Without freezing of

the high energy virtual orbitals, the singlet CI expansion size was 3,706,115 CSFs while the

triplet was 6,333,517 CSFs. This frozen virtual orbital approach resulted in a reduction in

the CI expansion size by a factor of nearly 43.

Grimme and Waletzke reported a DFT/MRCI result of 66703.1 cm−1 for the (n→ π∗)

excitation, corresponding to the 1Σ+ to 1Π transition (63). They obtained 69284.1 cm−1 for

the same excitation using TDDFT with the BHLYP functional. The DFT/MRCI transition

energy obtained using this model was 72989±200 cm−1, while the TDDFT excitation using

the CPBE96 functional was 73723 cm−1. Grimme’s and Waletzke’s DFT and TDDFT re-

sults could not be reproduced using the cc-pVTZ basis set and the BHLYP hybrid functional

with the NWChem program.

Using the damping parameters found from the training set using calculations involving

the first two rows on the periodic table, the carbon monoxide calculations performed here

agree in principle with those results obtained by Grimme and Waletzke. Results listed

in Table 13 show reasonable agreement between the DFT/MRCI results and the TDDFT

results. The DFT/MRCI model outperforms TDDFT for nearly every state and in overall

RMS error, slightly skewed by the large error in the 3Σ− state, which may be misidentified

in the correspondence with measured results. For the excitation published, the allowed
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Table 13 Carbon Monoxide cc-pVTZ DFT/MRCI Results

State DFT/MRCI TDDFT Measured
Results Results Results(71)
(cm−1) (cm−1) (cm−1)

1Σ+ 0 0 0
3Π 49960±98(+2.6) 47828(-1.8) 48686.7
3Σ+ 67570(+5.2) 65059(+1.3) 55825.49
3∆ 72669±30(+18.9) 72298(+18.3) 61120
3Σ− 76731(+37.4) n/a 64230.2
1Π 73508±387(+13.0) 73723(+13.3) 65075.7

RMS Error 23.6% 22.7%

(n → π∗), corresponding to the 1Σ+ → 1Π transition, this DFT/MRCI model yielded an

electronic excitation energy within 13% of experiment, mirroring the performance of the

TDDFT calculation. For the spin-forbidden transition, 1Σ+ → 3Π, this DFT/MRCI model

overestimated the excitation energy relative relative to experiment by roughly 3%, while

the TDDFT calculation underestimated the same transition energy by nearly 2%.

Another source of error in the calculation could come from the correlation functional.

While the more modern meta-GGA density functionals are possibly more accurate than

local density approximation or generalized-gradient approximation density functionals in

some cases because NWChem was unable to perform TDDFT calculations using them at

present.

Apples to apples comparisons between Grimme and Waletzke’s published DFT/MRCI

results for CO and those results obtained here are difficult for several reasons. First, while

this implementation of the DFT/MRCI model follows that of Grimme and Waletzke, the

basis of the CI algorithm differ between both approaches. The Grimme model is based on a

selected CI algorithm allowing more flexibility in selection of the CSFs in the CI expansion.

Second, their method incorporates a hybrid functional, with three more empirical parame-

ters fit to a training set then the model presented here. The presence of the three additional

fitted empirical parameters alone may be responsible for the 2.5% relative error with exper-

iment they obtained, versus the 13% found in this implementation of the model. Also, the

basis sets were not exactly the same, which could account for some of the discrepancy, even

though the basis set used in both calculations is triple-ζ quality.
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Boron Fluoride. Table 14 lists DFT/MRCI, TDDFT, and measured results for the

boron fluoride molecule at a bond length of 1.262 Å, obtained from diatomic spectroscopic

measurements by Herzberg (67). This DFT/MRCI calculation used references from an

active space defined by a 8 electron, 6 orbital full valence CAS over the boron and fluorine

2s and 2p orbitals, with the 41 highest energy virtual orbitals frozen. The Kohn-Sham

orbital energy difference between HOMO and the first frozen virtual orbital was roughly 38

eV. This expansion involved 206,346 CSFs. Without freezing the virtual orbitals, the BF

expansion size was over 9 million CSFs. Here, the DFT/MRCI approach to freezing virtual

orbitals resulted in a reduction in the CI expansion size of a factor of 46. Shape-consistent

RECPs were used on both boron and fluorine, along with the corresponding spin-orbit

operators, in order to obtain a relativistic treatment for both boron and fluorine. Both

RECPs had the 1s electrons in the core.

The boron fluoride diatomic was investigated in the Kleinschmidt et al paper (76).

They used a shape-consistent relativistic effective core potential was used along with a spin-

orbit operator. A cc-pVTZ quality basis set was used in their boron fluoride calculation.

Table 14 BF cc-pVTZ DFT/MRCI Results

State DFT/MRCI TDDFT Experiment
Results Results Results(71)
(cm−1) (cm−1) (cm−1)

1Σ+ 0 0 0

3Π2 28500±218(-2.2)
3Π1 30629±166(+5.0) 22329(+23.4) 29144.3
3Π+

0 ,3Π−

0 32057±154(+10.0)

1Π 55798±618(+9.1) 54452(+6.4) 51157.45
3Σ+ 68893(+4.7) 69983(+14.7) 61035.3
1Σ+ 71683(+9.7) 90809(+31.6) 65353.9
3Σ+ 65526(-2.3) 78023(+16.4) 67045

RMS Error 18.3% 45.5%

Kleinschmidt et al reported a DFT/MRCI result of 27831 cm−1 for the 1Σ+ to 3Π excitation

(76). Using a two-step method to compute spin-orbit matrix elements, they obtained a spin-
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orbit splitting of the 3Π state of 22.3 cm−1. They do not report a TDDFT excitation energy.

They reported no other state excitation energies.

A MR-SOCISD calculation without DFT on the same active space produces a spin-

orbit splitting in the 3Π state of 22.7 cm−1. The DFT/MRCI calculated spin-orbit splitting

between the 3Π2 and 3Π1 states was roughly 2129 cm−1, while the calculated splitting

between the 3Π1 and 3Π0+ and 3Π0− states was 1428 cm−1, nearly two orders of magni-

tude greater than the MR-SOCISD calculation and the Kleinschmidt et al results. There

are two possible reasons for this dramatic overestimation of the spin-orbit spitting in the

DFT/MRCI results. The first reason is most likely due to degeneracy errors introduced by

the DFT/MRCI method. The result of this state-broadening is to lift the degeneracies in

eigenvalues, introducing a source of error into the calculation. For the boron fluoride ex-

ample above, the degeneracy error introduced into the 3Π states amounts to approximately

180 cm−1 on average, potentially swamping out the very small spin-orbit splitting. This de-

generacy error suggests that this particular implementation of DFT/MRCI will not perform

well when computing small spin-orbit splittings. Approximate degeneracy is maintained by

the DFT/MRCI method in most cases, but the CI calculation can not restore eigenvalue

degeneracies once they have been broken. The second possible reason for the large spin-orbit

splitting error in the DFT/MRCI calculation is possibly due an overestimation of the ex-

pectation value of Ŝ2 on wave functions formed from Kohn-Sham orbitals. This is a known

feature of Kohn-Sham orbitals. The fact that the expectation value of Ŝ2 from restricted

and unrestricted self-consistent field calculations can be too large by up to several percent

(135). This affects spin-orbit matrix elements over these spin-adapted CSFs, in that the

contributions from Ŝ+, Ŝ−, and Ŝz can all be overestimated by a small amount.

For example, an unrestricted Kohn-Sham doublet wave function with an Ŝ2 expec-

tation value of 0.7618 overestimates the expectation value by nearly 1.6%. This results in

a value for Ŝz of 0.5058, a result in error by nearly 1.2%. This 1% error in Ŝz then gets

directly factored into the L̂zŜz contribution to the spin-orbit matrix element. Similar errors

propagate into the spin-orbit matrix elements from the Ŝ+ and Ŝ− contributions. Worse

case scenario, these errors are all on the order of 1 to 2%, with no cancelation, yielding a

spin-orbit matrix element in error by roughly 3 to 4%.
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It is important to note that the calculation by Kleinschmidt et al computed the spin-

orbit coupling in a two-step procedure, after the DFT/MRCI calculation on the singlet

ground state and triplet excited state had already been performed separately. Scalar rela-

tivistic effects were not included in their calculation.

In this calculation, however, both scalar relativistic and spin-orbit effects were in-

cluded in the DFT/MRCI calculation, the first such calculation performed. The relative

error obtained in the calculation for the excitation from the 1Σ+ → 3Π state was nearly

4.3% when compared with experiment when the 3Π state energies were averaged, and the

DFT/MRCI calculation outperformed the TDDFT calculation when comparing the RMS

errors over all six states computed. However, the spin-orbit splitting of the 3Π state was

grossly overestimated by this DFT/MRCI model. The error in the TDDFT calculation for

the 1Σ+ → 3Π excitation was in error by roughly 23%.

Bromine Atom. The bromine atom was chosen to provide a test of the spin-

orbit DFT/MRCI method using a fairly heavy atom. Spin-orbit coupling splits the doublet

P ground state arising from a p5 electron configuration into the ground state 2P 3

2

and

unoccupied 2P 1

2

state. Spin-orbit effects are largest in P states, and the splitting observed

in bromine atomic spectroscopy is on the order of 3600 cm−1. Non spin-orbit calculations

will be unable to resolve this splitting, producing only a single energy for the 2P state.

The original DFT/MRCI method proposed by Grimme and Waletzke can not perform

this calculation, as their original method did not incorporate two-component relativistic

effects. The method extension published by Kleinschmidt et al introduces spin-orbit effects

(but not scalar relativistic effects), and is multiplicity limited in the same way as the original

Grimme and Waletzke procedure to coupling between singlet and triplet states only.

Since the bromine atom ground state is an open p5 electronic configuration, with

an odd number of electrons, the electronic states will transform according to the extra

irreducible representations of the double group. This calculation represents the first ap-

plication of a DFT/MRCI method to an odd-electron state, incorporating both one- and

two-component relativistic effects.
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A restricted active space was chosen for the bromine atomic calculation, consisting of

the 4p5 and (4p45p1) references, with the 3d electrons treated as a frozen core. The cc-pVDZ

basis set provided by Dr. Russell Pitzer resulted in 30 basis functions, of which the highest

11 virtual orbitals were frozen. The CI expansion from this restricted active space consisted

of 83,720 CSFs. Without freezing the virtual orbitals, the expansion size would have been

2,740,584 CSFs. Thus, the DFT/MRCI approach resulted in a CI expansion size of a factor

of 33. A shape-consistent RECP and spin-orbit operator were used as well, with a valence

space of 3d, 4s, and 4p electrons.

Table 15 lists the result of a modest DFT/MRCI calculation. The Kohn-Sham orbital

energy difference between the HOMO and first frozen virtual orbital was roughly 34 eV.

Table 15 Bromine Atom cc-pVTZ DFT/MRCI Results

State DFT/MRCI Experiment
Results Results(71)
(cm−1) (cm−1)

2P 3

2

0 0
2P 1

2

4092±339(+11.0) 3685.24

The degeneracy error in the ground state was roughly 323 cm−1, while the degeneracy error

in the first excited state was about 101 cm−1, combining to produce an error of 339 cm−1

in the excitation energy and a relative error with experiment of roughly 11%.

A bug in the CIUDG code was uncovered during the bromine atomic spin-orbit CI

calculation in C1 symmetry. Each eigenvalue from the Spin-orbit Configuration Interaction

(SOCI) calculation in the odd-electron case are doubly degenerate. So, for a 2P 1

2

state, the

actual state is doubly degenerate, however, there should be only one eigenvalue associated

with it. A 2P 3

2

state is four-fold degenerate, but the calculation should have two eigenvalues

associated with the state. In C1 symmetry, however, the degeneracy of the state was doubled,

with all the roots associated with that doubling of the state degeneracy showing up as

eigenvalues of the calculation. For example, the four-fold degenerate 2P 3

2

state, which

should only have generated two degenerate eigenvalues, generated eight. This bug increases

the number of roots required to completely characterize a state by J value, placing a limit
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on the number of states that can can calculated in C1. This is not a bug in the DFT/MRCI

code, but in the odd-electron spin-orbit sections of the CIUDG code using C1 symmetry.

Overall, despite the degeneracy error, this DFT/MRCI calculation on bromine demon-

strates the capability of this DFT/MRCI code to provide reasonable results on an odd-

electron atom with both scalar relativistic and spin-orbit effects. Unlike BF, the DFT/MRCI

calculation was able to resolve the larger spin-orbit splitting in bromine, though there was

still a large relative error due to state-broadening of roughly 11% when compared with

experiment. This calculation represents the first DFT/MRCI on a doublet state that in-

corporates scalar relativistic and spin-orbit effects via RECP, and demonstrates that this

implementation is not multiplicity limited, as is the original Grimme and Waletzke algo-

rithm as well as the two-step procedure by Kleinschmidt et al. Both of their approaches

are limited to singlet and triplet states, and the Kleinschmidt approach can not incoporate

scalar relativistic effects. A more recent publication by Kleinschmidt et al which incorpo-

rates their Spin Orbit Coupling Kit directly into the MOLCAS computational chemistry code

with DFT/MRCI capability (77) performs the spin-orbit calculation in a one-step method,

but is still unable to incorporate scalar relativistic effects, and still has the singlet and triplet

spin multiplicity limitations.

Uranium +5 Ion. Based on the relative and RMS errors observed in the uranium ion

calculations in chapter two, all uranium calculations used the 68 electron RECP. Double-ζ

quality basis sets were used for all calculations. The basis set was originally developed by Dr.

Scott Brozell. However, the basis set used 3s basis functions, making it unusable in NWChem

calculations. Those basis functions had to be converted to 1s functions in order to obtain

the Vc matrix elements and the correlation energy in order to use the DFT/MRCI method

on the uranium systems. The basis set conversion procedure is described in Appendix C.

Using the converted 1s cc-pVDZ basis set in conjunction with the 68 electron shape-

consistent RECP and spin-orbit operator, the uranium +5 ion calculation performed in

chapter two was repeated using the DFT/MRCI model. The 5d electron shell was frozen in

the calculation, and a full valence CAS of 1 electron in 12 orbitals was used, corresponding

to all possible ways of putting one electron into the 5f and 6d orbitals. The five highest

energy virtual orbitals were frozen in the calculation. This active space resulted in an
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expansion size of 39,836 CSFs. The size of the CI expansion without the frozen virtuals was

1,813,300 CSFs. The DFT/MRCI approach resulted in a reduction in the CI expansion size

of a factor of 46. Table 16 lists the results of the DFT/MRCI calculation, along with the

corresponding MR-SOCISD calculation using the 3sd basis and the experimental values.

Table 16 U5+ DFT/MRCI Results, (5f6d)1 Reference Space

DFT/MRCI MR-SOCISD
68e 68e

Principle RECP 1s RECP 3sd
LS cc-pVDZ cc-pVDZ Experiment(17)
Component (cm−1) (cm−1) (cm−1)

2Fo
5

2

0 0 0
2Fo

7

2

6515±109(-14.4) 7578(-0.4) 7608.6

The degeneracy error in the 2F o
5

2

ground state amounted to nearly 71 cm−1. Degeneracy

error in the 2F o
7

2

first excited state was roughly 82 cm−1. Combining the ground-state and

first excited state degeneracy errors resulted produced an error in the excitation energy of

109 cm−1, yielding a relative error with experiment of 14%.

As in the case with the bromine calculation, the large spin-orbit splitting in the 2F

ground state, measured to be 7608.6 cm−1, was resolvable by this DFT/MRCI method.

Again, the C1 odd-electron bug in the CIUDG code doubled the expected degeneracies of the

ground and first excited states, requiring the calculation of 28 eigenvalues to fully resolve

them. The 2F 5

2

ground state required 12 eigenvalues to characterize, while the 2F 7

2

first

excited state required 16 eigenvalues to fully characterize by J value. The hard limit on

number of eigenvalues in the CIUDG code is 39, which would make exploring more excited

states of the uranium +5 ion difficult.

Because of the limit of 39 eigenvalues in the CIUDG code, the next expected excited

state, 2D 3

2

, would push the number of required roots to 36. This is the limit on the number

of states that can be examined with this version of the DFT/MRCI model. The reduced

number of 3d basis functions and the effect of the degeneracy errors are expected to result
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in a rather poor relative error for the 2D 3

2

state, based upon results obtained in chapter

two.

Uranium +4 Ion. Using the converted 1s cc-pVDZ basis set in conjunction with the

68 electron shape-consistent RECP and spin-orbit operator, the ground and first two excited

states of U+4 were calculated using the DFT/MRCI model. The 5d electron shell was frozen

in the calculation, and a full valence CAS of 2 electron in 7 orbitals was used, corresponding

to all possible ways of putting two electrons into the 5f orbital. The highest energy virtual

orbital was frozen in the calculation. This active space resulted in an expansion size of

260,116 CSFs. Without the frozen virtuals, the CI expansion size would have been 5,397,041

CSFs. The DFT/MRCI approach resulted in a reduction in the CI expansion size of a factor

of 21. Table 17 lists the results of the DFT/MRCI calculation, along with the corresponding

MR-SOCISD calculation using the 3sd basis and the experimental values. The 3sd basis

results with the 68 electron RECP for uranium +4 were obtained by Dr. Scott Brozell.

Table 17 U4+ DFT/MRCI and MR-SOCISD Results, 5f2 Reference Space

Principle DFT/MRCI 68e
LS 68e RECP RECP
Component 1s cc-pVDZ 3sd cc-pVDZ Measured(17)

(cm−1) (cm−1) (cm−1)

3H4g 0 0 0

3F2g 5078±111(+22.1) 4210(+1.2) 4160.65

3H5g 5604±284(-8.7) 6316(+2.9) 6136.88

It is apparent in the U4+ DFT/MRCI calculation that the degeneracy errors significantly im-

pact the calculation of the excitation energies. The ground state degeneracy errors amounted

to roughly 93 cm−1, while the degeneracy error in the 3F2 state was 61 cm−1. These errors

combine to produce an error in the 3H4g →3 F2g excitation energy of 111 cm−1. The de-

generacy error in the 3H5 was 268 cm−1. This combined with the degeneracy error in the

ground state to produce an error in the 3H4g →3 H5g excitation energy of 284 cm−1. The
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relative error with experiment of the first excited state was nearly 22%, while the relative

error in the second excited state was a more reasonable 9%.

Identification of individual states was additionally complicated in the uranium +4

DFT/MRCI calculation by the degeneracy error in each state was difficulty in identification

of the individual states. A large density of nearly degenerate states arise from the 5f2

electronic configuration in U4+. With no symmetry in the DFT/MRCI wave function to

guide state assignment, and state broadening causing overlap in excited states preventing

state assignment through J-value degeneracy, identification of the uranium +4 ion states

proved to be the most difficult of all cases studied.

Like the bromine atom, the uranium +4 has a measured excitation energy of the 3H4

→ 3F2 transition of 4160.65 cm−1. When compared with the combined errors found in the

uranium +5 ion excitation energy, the effect of the degeneracy errors in each individual

state on the excitation energy is smaller, the larger the excitation energy is.

In boron fluoride, with a spin-orbit splitting on the order of 20 cm−1, the degeneracy

errors prevent an accurate measurement of this splitting. In the bromine atom and uranium

+4 ions, with spin-orbit splittings on the order of 3600-4200 cm−1 relative errors in the

DFT/MRCI excitation energies are roughly 11-22%. Based on the the results listed in

Table 5 in chapter two for the MR-SOCISD calculations on the uranium +4 ion indicate

that the dominant source of error in the relativistic DFT/MRCI calculations is due to the

degeneracy errors, not the basis set or RECP. In the uranium +5 ion, with an excitation

energy of roughly 7600 cm−1, the combined relative error is roughly 14%.

Uranyl Ion, UO2+
2 . The final application of the DFT/MRCI model was to the

uranyl ion, UO2+
2 . The DFT/MRCI calculation again used the converted 1s cc-pVDZ

basis set on the uranium atom, in conjunction with the 68 electron RECP and spin-orbit

operators. The 5d uranium electrons were frozen in the calculation, and a restricted active

space consisting of (σ1
uδuφu)1 was used. The five highest energy virtual orbitals were frozen

in this calculation. The Kohn-Sham orbital energy difference between the HOMO and

first frozen virtual orbital was 35 eV. The DFT/MRCI calculation consisted of 351,035

CSFs. Without the frozen virtuals, the expansion length was 22,545,659 CSFs. Here, the

DFT/MRCI approach yielded a reduction in the CI expansion of a factor of 65.
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Table 18 lists the results for the DFT/MRCI calculation, as well as the results of a

MR-SOCISD calculation using the same RECP and a 3sd cc-pVDZ basis (9). The MR-

SOCISD calculation involved 5,322,501 CSFs, while the DFT/MRCI calculation involved

351,035 CSFs, a reduction in the CI expansion length of over an order of magnitude, while

producing comparable results.

Table 18 UO2+
2 DFT/MRCI results

Principle DFT/MRCI MR-SOCISD
LS 68e RECP 68e RECP
Component 1s cc-pVDZ 3sd cc-pVDZ (9)

1Σ+

0g 0 0

3∆1g 18235±354 19799
3∆2g 20393±192 19912
3∆3g 21615±404 21138

3Φ2g 22838±73 22432
3Φ3g 26123±42 25064
3Φ4g 26825±52 26486

Table 19 lists a series of experimentally measured uranyl fluorescent series (111) as

well as the results of the DFT/MRCI and MR-SOCISD calculations.

While the uranyl ion is an alluring benchmark for relativistic calculations, due to its

importance in uranium chemistry, the lack of gas-phase experimental measurements of its

electronic spectra make meaningful accuracy assessments of theoretical methods applied to

uranyl difficult. Without such gas-phase data to compare with, only comparisons versus

crystallographic measurements are possible. In such bulk measurements, uncertainties in

the local uranyl environment, the effect of crystal field splittings, and other perturbations

to the spectra make most quantitative comparisons problematic.

However, based upon the results listed in the last chapter in Table 18, it appears the

this DFT/MRCI model does at least as good a job as a MR-SOCISD calculation, and does

it at a substantial computational savings when compared to the MR-SOCISD calculation.

The DFT/MRCI CI expansion was roughly 315,000 CSFs, versus the nearly 5,000,000 CSF

expansion in the MR-SOCISD calculation. It is possible that the reduction in 3d function
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Table 19 UO2+
2 Calculated and Measured Fluorescent Series

Fluorescent
Molecule Series

(cm−1)

DFT/MRCI 18235±354
MR-SOCISD 68e RECP(9) 19779

Rb2UO2Cl4 2H2O 19961
K2UO2Cl4 2H2O 19970

Cs2UO2Cl4 20096
Rb2UO2(SO4)2 20390

UO2(NO3)2 6H2O 20578
Cs2UO2(SO4)2 3H2O 20594

UO2(NO3)2 3H2O 20779
Rb2UO2(NO3)4 20808
K2UO2(NO3)4 20818
K2UO2(CO3)2 20943

PbUO2(CH3COO)4 20958
CsUO2(CH3COO)3 20992
RbUO2(CH3COO)3 21049
NH4UO2(CH3COO)3 21056

CsUO2(NO3)3 21090
NH4UO2(NO3)4 21098

NaUO2(CH3COO)3 21135
KUO2(NO3)3 21183
RbUO2(NO3)3 21199
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flexibility resulting from the 1s basis conversion process is responsible for more error than

degeneracy errors here, which are on the range from 42 cm−1 for the 3Φ3g state to 404 cm−1

in the 3∆3g state. Despite this, the DFT/MRCI results fall nicely in range of measured

uranyl spectra listed in Table 19. One possible explanation is that some cancellation of

error occurred in the linear molecular calculation that was not present in the spherically

symmetric ionic calculations. The calculated excitation energies for the fluorescent spectra

fall in the low end of the measured values. A likely reason for the measured values being

higher is because of solvation or crystal field effects that are not present in the theoretical

gas phase calculations.
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IV. Conclusions

This chapter contains an analysis of the results of the various aspects of this research project,

as well conclusions based upon that analysis. It is divided into several sections, one section

for each major thrust of this project.

The first section analyzes and draws conclusions from the series of MR-SOCISD cal-

culations on the uranium +5 and uranium +4 ions described in chapter two. Conclusions

based on the relative errors involved in the various core-valence cut-off choices using the

shape-consistent RECPs are drawn. The second section examines the overall performance

of this implementation of the DFT/MRCI model, and based on the analysis in the previous

chapter, examines the observed successes in the calculations on carbon monoxide, boron

fluoride, the bromine atom, followed by a discussion of performance of the DFT/MRCI

model on uranium ions and molecules. Next the successes and failures in achieving the re-

search objectives laid out in chapter one will be covered, followed finally by suggestions for

future work in the area of hybrid DFT and wave function based computational chemistry

for application to atomic and molecular excited states.

Uranium Shape-Consistent RECP Accuracy Assessment

Two factors impacting the relative and overall errors in the calculation of the electronic

excitation energies of the U5+ and U4+ cations are the sizes of the relativistic effective

potential core and the reference space.

The effect of the core size in the uranium cation calculations shows that the 68 electron

core does well in both the 5fn and (5f6d)n reference spaces when compared with experi-

ment. States that arise from electron configurations not included in the reference space were

poorly modeled in all calculations and skew the overall RMS error accordingly. These states

are the 2D and 2S states in the U5+ calculations, which arise from 6d1 and 7s1 electron

configurations, respectively. Similarly, the odd states in the U4+ calculations, arising from

5f16d1 electron configurations are not modeled well using only the 5f2 references.

The larger error in those states can be explained by the fact excitations from electron

configurations specifically in the reference space represent excitation levels higher than single

and double excitations. For example, states produced by 6d1 configurations are computed
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at the single and double excitation level when using a smaller 5f1 reference space, however,

these same states contain selected contributions of higher order (triple and quadruple) exci-

tations from the larger (5f6d)1 active space. Thus, the 2D states are computed at excitation

levels higher than singles and doubles when computed using the larger active space.

With respect to the choice of the core size, in both uranium cation calculations, the 68

electron core produced the lowest relative and RMS errors, on the order of 1-2% for those

states included in the reference space in the U5+ calculations. The 78 electron core produces

large relative and RMS errors in the U5+ calculation. The 60 electron core produces better

results when compared with the 78 electron core, however, the accuracies produced by the

60 electron core do not warrant the larger computational effort in terms of CI expansion

size involved in its use.

For the +4 cation, however, different results were obtained. When examining only the

even states arising from the 5f2 configurations, both the 68 and 78 electron core calcula-

tions produced roughly equivalent results, both of which outperform the 60 electron core.

Inclusion of the odd states arising from 5f16d1 electronic configurations skew the overall

errors in favor of the 68 electron core.

One possible explanation for the relative success of the 68 electron core RECP in the

U5+ calculation may lie in the nature of the core and valence electron shell treatments.

Recall the various valence electrons included in each RECP listed in table 1. Incorporation

of an electron shell in the core allows for a relativistic treatment (relativistic contraction

and expansion, as well as spin-orbit splitting) of those electrons, while relativity is treated

indirectly, via interaction with the core potential, in the valence electrons. Electrons in the

core p-shells are known to exhibit the largest spin-orbit spitting, so inclusion of the uranium

5p shell in the core in order for an accurate relativistic description seems warranted, as

is done in the 68 and 78 electron core potentials. Removal of the uranium 5d shell from

the valence space, as is done in the 78 electron shape-consistent core potential, does not

allow for relaxation of the 6d electron shell. The 68 electron core RECP strikes one possible

balance between relativity and polarization. The near degeneracy of the 5f and 6d shells in

many uranium atomic species seems to require an accurate treatment of the 6d electronic
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excitations, which can be facilitated by freeing the 5d shell from the core and into the valence

electron space.

The similar performance of the 78 and 68 electron cores in the U4+ calculations seems

to counter the argument presented above. One possible source of this result is the fact that

in this core potential treatment, there are no core-valence interactions possible, so the shape-

consistent core potential method does not include any way for the core region to polarize.

Thus, while the 68 electron core allows polarization of the 5d electrons, with only indirect

relativistic effects via interaction with the core, the 78 electron core allows a relativistic

treatment of the 5d electrons, but no polarization to occur. One possible explanation of

the observed results is that these treatments are roughly the same magnitude, and that a

higher order description of the core-valence interaction may be necessary to resolve the near

degeneracy in the 68 and 78 electron core results. The fact remains, however, that the 78

electron core calculations represent a lower computational cost in terms of CI expansion

length, and give accurate results, in the U4+ calculations. The presence of a trend may be

established by examining the U3+ and U2+ cations.

Overall, applying Christiansen et al shape-consistent relativistic effective core poten-

tials in MR-SOCISD calculations of the ground and excited states of U5+ and U4+ ions

shows that the 68 electron RECP, along with a cc-pVDZ basis set, yields relative errors

of 1 to 3% with experiment for each calculated state, part of which may be due to a for-

tuitous cancellation of error based on analysis of results obtained using double-ζ quality

basis sets. The lowest relative errors in excitation energies were achieved when the refer-

ence space included all the electron configurations spawning the states of interest. Inclusion

of the spin-orbit interaction is crucial in these calculations, as the lowest energy electronic

transitions in U5+ and U4+ arise from 5f → 5f transitions.

DFT/MRCI Model

The first experiences with applications of this implementation of the DFT/MRCI

model was during the determination of the damping parameters p1 and p2. The training

systems, listed in Appendix B, span the first two rows of the periodic table, with emphasis

on atomic systems with open 2p shells using double-ζ quality basis sets.
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It is interesting to note the absolute errors for each individual test case listed in

Appendix B vary. In some cases, the error between the DFT/MRCI and FCI results are

very small, on the order of micro-Hartrees. Even the largest errors obtained are not greater

than 10s of milliHartrees. It is impressive that the hybrid DFT/CI method implemented

here can achieve such accuracies when compared with FCI calculations, which are known

to be the exact non-relativistic solution for that particular basis set. All training systems

listed in Appendix B were treated non-relativistically.

When examining the density plots of in Appendix B, some are devoid of features. The

beryllium cc-pVDZ calculation is one such example. The triple-ζ calculation reveals more

detail in the p1/p2 space, where the double-ζ basis set calculation shows no features at all.

Helium is another such example where the larger basis set reveals detail in the damping

parameter space that is absent in the calculation with the smaller basis set. In all cases

where there were double- and triple-ζ quality basis set calculations on the same system, the

larger basis set revealed as much and usually more detail in the damping parameter space.

Unfortunately, for the larger atoms, beyond carbon, FCI calculations using larger basis sets

simply were not feasible in this research effort.

Examining the density plots in Appendix B, several of the calculations reveal interest-

ing structure. Some density plots revealed contours similar in shape to those found in the

analytical investigation of the two level system investigated in chapter three. Double-ζ H2,

the helium atom at both basis set sizes, oxygen and fluorine all exhibit this simple structure.

Most of the other density plots showed band-like structure in the damping parameter space.

In most cases where this minimum error banding occurred, the bands tended to stabilize at

higher values of p2, as if exhibiting asymptotic behavior. It is difficult to draw overarching

significance to this banded structure in the damping parameter space, as little is known

about the theoretical basis of the DFT/MRCI method. One of the most interesting band

structures is seen in the case of the beryllium dimer. There does appear to be some corre-

lation between the banding structure in the density plots and the single reference nature of

the test system involved. Both the beryllium atom (cc-pVTZ) and beryllium dimer have the

most multi-determinant character, and both exhibit interesting banding structure. Carbon,

nitrogen, and boron also have larger multi-reference character than the other systems, and

they exhibit banding in the density plots. It is possible, at least in the plots that show fea-
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tures (cc-pVDZ helium and beryllium are relatively featureless) in the damping parameter

space, that all of the plots show banding, however, the location and direction of the bands

varies from system to system. In some systems, such as lithium, the band runs up the right

hand side of the density plot, and is independent of p2. In other cases, such as neon, the

band runs up the left hand side of the density plot, apparently independent of p2. Perhaps

in these cases, which are mostly single-determinant systems, forming a CI expansion based

upon those Kohn-Sham orbitals results in a good initial guess, which is then only corrected

through small contributions from degenerate CSFs. In the cases of oxygen and fluorine,

it appears that the DFT/MRCI approach using a GGA correlation functional may not be

accurate enough to show the banding structure, based on the similarities with the absolute

error density plots of the two level system investigated in detail in Appendix B. A rigor-

ous theoretical basis for the hybrid DFT/MRCI method should be able to account for this

banding structure. At the moment, however, only loose trends can be drawn from the data

in Appendix B. Whether these trends can be attributed to the accuracy of the correlation

functional, the basis set quality, or, the multi-determinant nature of the system studied is

difficult to determine at this stage.

Three systems were chosen to demonstrate the capabilities of this implementation of

this DFT/MRCI model: Carbon monoxide, boron fluoride, and the bromine atom. Car-

bon monoxide and boron fluoride were chosen to compare the accuracy of this model with

published results of Grimme and Waletzke for carbon monoxide, and Kleinschmidt et al for

boron fluoride. The carbon monoxide calculation did not involve relativistic effects. The

DFT/MRCI method resulted in a reduction in the CI expansion size in both CO and BF of

over a factor of 40.

Using the damping parameters found from the training set using calculations involving

the first two rows on the periodic table, the carbon monoxide calculations performed here

seem to agree in principle with those results obtained by Grimme and Waletzke. Results

listed in Table 13 show reasonable agreement between the DFT/MRCI results and the

TDDFT results. The DFT/MRCI model outperforms TDDFT for nearly every state and

in overall RMS error, slightly skewed by the large error in the 3Σ− state, which may be

misidentified in the correspondence with experiment. For the excitation published, the

allowed (n → π∗), corresponding to the 1Σ+ → 1Π transition, this DFT/MRCI model
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yielded an electronic excitation energy within 12% of experiment, mirroring the performance

of the TDDFT calculation. For the spin-forbidden transition, 1Σ+ → 3Π, this DFT/MRCI

model overestimated the excitation energy relative relative to experiment by roughly 1%,

while the TDDFT calculation underestimated the same transition energy by nearly 2%.

Another source of error in the calculation could be the correlation functional used.

Modern meta-GGA density functionals are possibly more accurate than local density ap-

proximation or generalized-gradient approximation density functionals in some cases.

Apples to apples comparisons between Grimme and Waletzke’s published DFT/MRCI

results for CO and those results obtained here are difficult for several reasons. First, while

this implementation of the DFT/MRCI model follows that of Grimme and Waletzke, the

basis of the CI algorithm differ between both approaches. The Grimme model is based on a

selected CI algorithm, allowing more flexibility in selection of the CSFs in the CI expansion.

Second, their method incorporates a hybrid functional, with three more empirical parame-

ters fit to a training set then the model presented here. The presence of the three additional

fitted empirical parameters alone may be responsible for the 2.5% relative error with exper-

iment they obtained, versus the 12% found in this implementation of the model. Also, the

basis sets were not exactly the same, which could account for some of the discrepancy, even

though the basis set used in both calculations are of triple-ζ quality.

The DFT/MRCI calculation on boron fluoride performed here was an attempt to

duplicate the results obtained by Kleinschmidt et al using the relativistic capabilities of the

COLUMBUS code in conjunction with the DFT/MRCI model. It is important to note that

the calculation by Kleinschmidt et al involved only computing the spin-orbit coupling in a

two-step procedure, after the DFT/MRCI calculation on the singlet ground state and triplet

excited state had already been performed. Scalar relativistic effects were not included in

their calculation.

In this calculation, however, both scalar relativistic and spin-orbit effects were included

in the DFT/MRCI calculation, the first such calculation performed. While the relative

error obtained in the calculation for the excitation from the 1Σ+ → 3Π state was nearly

22% when compared with experiment, and the DFT/MRCI calculation outperformed the

TDDFT calculation when comparing the RMS errors over all six states computed. However,
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the spin-orbit splitting of the 3Π state was grossly overestimated by this DFT/MRCI model.

There are two possible contributing factors to this large spin-orbit splitting error in the BF

calculation. First, state broadening is introduced by the DFT/MRCI method. The result

of this state-broadening is to lift the degeneracies in eigenvalues, introducing a source of

error into the calculation. For the boron fluoride example above, the state broadening error

introduced into the 3Π state is roughly 115 cm−1, potentially swamping out the very small

spin-orbit splitting. This degeneracy error suggests that this particular implementation of

DFT/MRCI will not perform well when computing small spin-orbit splittings. Kleinschmidt

et al reported a spin-orbit splitting of about 22 cm−1, a result verified through a small MR-

SOCISD calculation.

The degeneracy errors arise from two sources. The first source is the broken degeneracy

in the initial Kohn-Sham orbitals, problematic for DFT calculations and atomic calculations

with d orbitals and above. This is due to the fact that the approximate density functionals

are not yet capable of reproducing the degeneracy in spherically symmetric states with

angular momentum L = 2 or higher. The second degeneracy error source is the DFT/MRCI

method, which was shown in chapter three to be capable of breaking degeneracies between

eigenvalues. Approximate degeneracy is maintained by the DFT/MRCI method in most

cases, but the CI calculation can not restore proper eigenvalue degeneracies if they are

broken in the initial guess. The second possible reason for the large spin-orbit splitting

error in the DFT/MRCI calculation is possibly due an overestimation of the expectation

value of Ŝ2 on wave functions formed from Kohn-Sham orbitals. It is a known feature of

Kohn-Sham orbitals (135) that the expectation value of Ŝ2 from restricted and unrestricted

self-consistent field calculations are too large by up to several percent. This affects spin-

orbit matrix elements over these spin-adapted CSFs, in that the contributions from Ŝ+, Ŝ−,

and Ŝz can be overestimated by a small amount. Worse case scenario, these errors are all

on the order of 1 to 2% with no cancellation, yielding a spin-orbit matrix element in error

by roughly 6 to 7%.

In terms of correspondence with the measured experimental excitation energy, the

DFT/MRCI calculation was able to predict the 3Π excitation energy to less than 22%,

with a very small CI expansion of less than 20,000 CSFs, however degeneracy errors made
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an accurate spin-orbit splitting calculation impossible for this system. The corresponding

relative error in the TDDFT calculation was 23.4%.

The bromine atom is an odd-electron system, with a 2P ground state. It is a fairly

heavy atom with a spin-orbit splitting of the ground state which is two orders of magnitude

higher than in BF. Indeed, experiment measures a spin-orbit splitting in the 2P state of

about 3600 wave numbers.

A bug in the odd-electron, spin-orbit behavior of the CIUDG code was uncovered which

resulted in a doubling of the degeneracies of the calculated eigenvalues in C1 symmetry.

This bug increases the number of roots required to completely characterize a state by J

value, placing a limit on the number of states that can can calculated in C1. This is not a

bug in the DFT/MRCI code, but in the odd-electron spin-orbit sections of the code in C1

symmetry.

The degeneracy error in the Br ground state was roughly 323 cm−1, while the de-

generacy error in the first excited state was about 102 cm−1, yielding a relative error with

experiment of 11%. Overall, despite the degeneracy error, this DFT/MRCI calculation on

bromine demonstrates the capability of this DFT/MRCI code to provide reasonable results

on an odd-electron atom with both scalar relativistic and spin-orbit effects. Unlike BF, the

DFT/MRCI calculation was able to resolve the larger spin-orbit splitting in bromine, though

there was still a large relative error due to state-broadening of roughly 11% when compared

with experiment. This calculation represents the first DFT/MRCI on a doublet state that

incorporates scalar relativistic and spin-orbit effects via RECP, and demonstrates that this

implementation is not multiplicity limited, as are the original Grimme and Waletzke codes,

which are unable to incorporate scalar relativistic effects, and the two-step procedure by

Kleinschmidt et al. Both the Grimme and Waletzke and Klienschmidt et al DFT/MRCI

model implementations are limited to singlet and triplet states. A more recent publication

by Kleinschmidt et al which incorporates their Spin Orbit Coupling Kit directly into the

MOLCAS computational chemistry code with DFT/MRCI capability (77) performs the spin-

orbit calculation in a one-step method, but is still unable to incorporate scalar relativistic

effects, and it still has the singlet and triplet spin multiplicity limitations. The DFT/MRCI
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approach here in the bromine calculation yielded a reduction in the CI expansion size of a

factor of 33.

Based upon the analysis in Appendix C, the basis set conversion procedure used to

create a useful 1s function basis set for use in DFT/MRCI calculations resulted in an

adequate cc-pVDZ basis set, but reduced in size from the original 3sd basis. Most of the

basis set reduction occurred in the elimination of 3d functions, reducing the flexibility of the

basis set somewhat. Calculations using both the 1s and 3sd basis set showed little impact

in the f → f transitions characteristic in the electronic spectra of the uranium +5 and +4

ions. In the +5 ion, both basis sets produced relative errors of less than 1% in 2F 5

2

→ 2F 7

2

transition. The effect of the conversion process became apparent in the D and S states.

The effect was particularly pronounced in the S state, with a relative error of nearly 37% in

the converted 1s basis set versus 10% in the original 3sd basis set. Based on this analysis,

it is assumed that the states arising from 5f configurations are relatively unaffected by the

conversion process.

As in the case with the bromine calculation, the large spin-orbit splitting in the 2F

ground state, measured experimentally to be 7608.6 cm−1, was resolvable by this DFT/MRCI

method. Again, the C1 odd-electron bug in the CIUDG code doubled the expected degen-

eracies of the ground and first excited states, required calculation of 28 eigenvalues to fully

resolve them. The 2F 5

2

ground state required 12 eigenvalues to characterize, while the 2F 7

2

first excited state required 16 eigenvalues to fully characterize.

Degeneracy errors in the 2F 5

2

ground state amounted to nearly 71 cm−1. Degeneracy

error contributed roughly 82 cm−1 to the 2F 7

2

excited state. Combining the ground state and

first excited state error statistically, the DFT/MRCI model underestimates the excitation

energy calculation climbs by about 14%. Cancellation of errors could account for the reduced

relative error in the maximum excitation energy listed in Table 16. The next expected

excited state, the 2D 3

2

would push the number of required eigenvalues to 36. This is the

limit on the number of states that can be examined with this version of the DFT/MRCI

model, because 39 eigenvalues is the hard coded limit in CIUDG.
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The U5+ active space resulted in an expansion size of 39,836 CSFs. The size of the

CI expansion without the frozen virtuals was 1,813,300 CSFs. The DFT/MRCI approach

resulted in a reduction in the CI expansion size of a factor of 46.

It is apparent in the U4+ DFT/MRCI calculation that the state broadening intro-

duces a significant error into the calculation of the excitation energies. The combined 3H4

ground state and 3F2 degeneracy errors yield an overestimation of the excitation energy by

a slightly more than 22%. The second excited state transition energy is underestimated by

a 9%. This result was achieved with a CI expansion size of 260,116 CSFs. Without the

frozen virtuals, the CI expansion size would have been 5,397,041 CSFs. In the DFT/MRCI

approach resulted in a reduction in the CI expansion size of a factor of 21.

An additional complication in the uranium +4 DFT/MRCI calculation was that the

degeneracy error in each state complicated identification of the individual states. A large

density of nearly degenerate states arise from the 5f2 electronic configuration in U4+. The

main difficulties in state identification were due to lack of symmetry in the DFT/MRCI

wave function and state broadening overlap in excited states. Both factors complicated

state assignment through J degeneracy.

The uranium +4 has a measured excitation energy of the 3H4 → 3F2 transition of

4160.65 cm−1. When compared with the combined errors found in the uranium +5 ion

excitation energy, the effect of the degeneracy errors in each individual state on the excitation

energy is smaller, the larger the excitation energy is. This trend, based on the boron fluoride,

bromine atom, uranium +4, and uranium +5 ion DFT/MRCI results is supported by the

calculations.

In boron fluoride, with a small spin-orbit splitting on the order of 20 cm−1, degen-

eracy errors prevent an accurate measurement of this splitting. In the bromine atom and

uranium +4 ions, with spin-orbit splittings on the order of 3600-4200 cm−1, relative errors

in the DFT/MRCI excitation energies are roughly 11-22%. In the uranium +5 ion, with an

excitation energy of roughly 7600 cm−1, the combined relative error is roughly 14%. Based

on the the results in chapter two for the MR-SOCISD calculations on the uranium +4 and

+5 ions, the dominant source of error in the relativistic DFT/MRCI calculations appears

to be due to the degeneracy error.
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The final application of this DFT/MRCI model to the uranyl ion shows that this

method holds promise, while the uranium ionic calculations showed large relative errors

with experiment in the first excitation energy.

Based upon the results listed in the last chapter in Table 18, it appears the this

DFT/MRCI model does at least as good a job as a MR-SOCISD calculation, and does

it at a substantial computational savings when compared to the MR-SOCISD calculation.

The DFT/MRCI CI expansion was roughly 315,000 CSFs, versus the over 22,000,000 CSFs

resulting from no frozen virtual orbitals. Here, the DFT/MRCI method yielded a reduction

in the CI expansion by a factor of 65. It is possible that the reduction in 3d function

flexibility resulting from the 1s basis conversion process is responsible for more error than

degeneracy errors here, which are on the range from 42 cm−1 for the 3Φ3g state to 404 cm−1

in the 3∆3g state. Despite this, the DFT/MRCI results fall nicely in the range of measured

uranyl spectra listed in Table 19. One possible explanation is that some cancellation of

error occurred in the linear molecular calculation that was not present in the spherically

symmetric ionic and atomic calculations. The calculated values for the fluorescent spectra

fall in the low end of the measured values. A likely reason for the measured values being

higher is because of solvation or crystal field perturbations that are not present in the

theoretical gas phase calculations.

Research Objective Successes and Failures

The focus of this work was to develop an accurate and scalable method for com-

puting the electronic spectra of heavy element compounds which incorporates one- and

two-component relativistic effects based upon the hybrid DFT-CI method developed by

Grimme and Waletzke (62) (63).

By leveraging the relativistic capabilities in the COLUMBUS relativistic quantum chem-

istry code, these objectives were successfully completed, as demonstrated by the boron

fluoride, bromine atom, uranium +4 and +5 ions, as well as the uranyl ion. Scalar relativis-

tic effects were incorporated through the use of shape consistent RECPs, while spin-orbit

effects were incorporated in a one-step fashion through the use of spin-orbit operators.
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This DFT/MRCI model achieved modest accuracy when computing electronic exci-

tation energies, and consistently outperformed TDDFT calculations of the same excitation

energy. Errors in eigenvalue degeneracies, also referred to as state broadening, governed the

overall accuracy achievable in the electronic excitation energy in states split by a spin-orbit

Hamiltonian. For boron fluoride, with a spin-orbit splitting in the 3Π state of roughly 20

cm−1, as determined by MR-SOCISD calculations and obtained in reference (76), these

state broadening errors prevented accurate measurement of the spin-orbit splitting. This

model was unable to resolve the splitting, grossly overestimating the spin-orbit splitting by

several orders of magnitude. It should be noted that the measured spectroscopic values do

not report spin-orbit splitting in the 3Π state.

In the case of the bromine atom, with spin-orbit splittings of the 2P ground state of

roughly 3600 cm−1, this DFT/MRCI model was able to compute the 2P 3

2

→2 P 3

2

excita-

tion energy to a relative error with experiment of around 11%. The bromine atom was a

significant calculation, in that not only did it demonstrate the DFT/MRCI model could

achieve modest accuracy in the case of a fairly heavy atom, it was also the first non-singlet,

non-triplet DFT/MRCI calculation performed. This calculation demonstrated that this

implementation of the DFT/MRCI model was successful in removing the spin multiplicity

limitations inherent in the original Grimme and Waletzke model.

The DFT/MRCI calculation on the uranium +4 ion, with a measured excitation

energy for the 3H4 → 3F2 transition of roughly 4100 cm−1, yielded modest results on the

roughly the same order as those obtained in the bromine calculation. Relative error between

the DFT/MRCI and measured excitation energy was on the order of 22% in this case.

The DFT/MRCI results on the 2F 5

2

→ 2F 7

2

transition again yielded roughly the same

relative error as was observed in the bromine and uranium +4 calculations. A relative error

with experiment of around 14% was observed in the uranium +5 calculation, where the

measured excitation energy was nearly 7600 cm−1. The reduction in relative error here

might be a result of the larger spin-orbit splitting of the ground state, but is consistent with

the boron fluoride, bromine, and uranium +4 results.

The final application of this DFT/MRCI model to the uranyl ion showed the most

promising results in terms of relative error with respect to measured photoluminescence
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spectra. While no direct comparison with measured values is possible for this calculation,

the results obtained for the 1Σ0g+ → 3∆1g transition compare favorably with larger MR-

SOCISD calculations and measured uranyl spectra in crystalline compounds. Table 19 in

chapter three show these results. Reductions in CI expansion size of factors of 25-65 were

achieved using the DFT/MRCI approach of freezing high energy virtual orbitals. This

reduction of effort occurred while still beating the accuracy of TDDFT in RMS and relative

error in almost every case.

This implementation of the DFT/MRCI model, based upon a correlation-only density

functional, removed the spin multiplicity limitation inherent in the original Grimme and

Waletzke DFT/MRCI method. Examining the DFT/MRCI calculations on doublet and

quartets in Appendix B, errors on the order of 6-70 microHartrees with respect to the FCI

excitation energies were obtained in lithium, boron, and nitrogen, which have 2S, 2P , and

4S ground states respectively. Calculations on the 2P and 2F states of bromine and uranium

+5, respectively demonstrate successful relativistic DFT/MRCI calculations on a doublet

atomic system.

Accuracy of the DFT/MRCI method was another research goal in this project. Cal-

culations used to determine the damping parameters, presented in Appendix B, achieved

error ranging from 6-70 microHartrees with respect to FCI excitation energies as well as

consistently outperforming TDDFT results over a wide range of states. It is apparent that

this DFT/MRCI model, in the non-relativistic case, can achieve accuracies rivaling and

exceeding those obtainable using TDDFT and MR-CISD calculations in most cases exam-

ined. Using a correlation only density functional to compute the dynamic correlation energy

was successful in producing accurate, meaningful results, and was directly responsible for

lifting the multiplicity limitation. However, some error in the method will always remain

as long as 100% exact HF exchange is used, even if the exact correlation functional was

found. This is because HF exchange is exactly only with HF orbitals, not when used with

Kohn-Sham molecular orbitals. Additionally, the relative errors produced in the relativistic

calculations, due mostly to degeneracy errors inherent to this method, are inadequate for

precision spectroscopic predictions.
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In terms of efficiency, in the case of MR-CISD comparisons, the DFT/MRCI achieved

better results using smaller CI expansions by freezing select virtual orbitals. Experience

demonstrated that the DFT/MRCI calculations produced good results by freezing virtual

orbitals with Kohn-Sham orbital energy differences with the HOMO on the order of 40 eV.

Substantial reductions in CI expansion size were achieved in all cases.

With respect to scalar relativistic and spin-orbit effects, accuracy of this DFT/MRCI

model was clouded by errors in eigenvalue degeneracies, on the order of 10s to 100s of wave

numbers. The best results were obtained in U+5, with a relative error in the excitation

energy of around 9%. Uranyl ion results also looked favorable, though no direct compar-

ison with experiment was possible. Larger errors marred the bromine and uranium +4

ion DFT/MRCI calculations, resulting in relative errors with experiment of 11-22%. It is

possible these errors can be reduced by increasing the basis set size, which will be difficult

in the case of uranium, but until a DFT/MRCI method which can preserve symmetry in

the eigenvalues is developed, these errors will likely not change much. The observed trend

in the BF, Br, U4+, and U5+ calculations indicate that the degeneracy error impact on

DFT/MRCI accuracy is reduced in systems with larger spin-orbit splittings.

Future Work

The results of this research listed in Appendix C and the previous chapter suggest

several avenues for future work. The future research proposed below is ordered by the

scope of the research and the estimated time required. Either way, the accuracy and effi-

ciency of the DFT/MRCI method is intriguing, and it is definitely worthy of further study.

Understanding the theoretical basis behind the success of the model is crucial.

DFT/MRCI with Other Correlation Density Functionals. One research project

spinning off from this work is a relatively small scale project. All results obtained in Ap-

pendix B and chapter three were obtained using the CPBE96 GGA correlation-only density

functional. Original results obtained by Grimme and Waletzke and later, Kleinschmidt et

al used a hybrid GGA density functional.

As research into DFT continues, especially development of exchange-correlation den-

sity functionals, John Perdew’s vision of the development of more accurate density func-
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tionals follows a certain progression that he calls “Jacob’s Ladder” (103). The analogy,

beginning at the bottom rung on “Earth” with Hartree theory, and ending on the top rung

in “Heaven” with chemical accuracy, follows the progression

• Rung 0 – Hartree theory “Earth”

• Rung 1 – Local density only (LDA).

• Rung 2 – Explicit dependence on gradients of the density (GGA functionals).

• Rung 3 – Explicit dependence on kinetic energy density (meta-GGA functionals).

• Rung 4 – Explicit dependence on occupied orbitals (hybrid functionals).

• Rung 5 – Fully non-local explicit dependence on unoccupied orbitals.

• Rung 6 – Chemical Accuracy “Heaven”

To date, DFT/MRCI performed by Grimme and Waletzke, Kleinschmidt et al, and

this work used GGA density functionals only, corresponding to the second rung on Jacob’s

Ladder. However, current development of functionals has progressed to step three on Jacob’s

Ladder, with the availability of meta-GGA density functionals.

It would be interesting to reproduce the work done here using range of LDA and meta-

GGA correlation-only density functionals. Development of damping parameters should

proceed along the lines presented in Appendix B and chapter three, and a reexamination of

accuracy and efficiency of this DFT/MRCI method on the CO, BF, Br, and uranium ion

systems would be of interest. A possible result of this proposed work would lead to a better

understanding of the accuracy of the DFT/MRCI method as various density functional

approximations are used, progressing up “Jacob’s Ladder” as envisioned by Perdew.

This research could proceed with the DFT/MRCI model as is, using the file-based

interface between COLUMBUS and NWChem. However, as of version 4.7, NWChem is unable to

perform TDDFT calculations using meta-GGA density functionals.

Integration of DFT Within SCFPQ using Abelian Point Groups . The file-based DFT

interface between NWChem and COLUMBUS provided a method to use Kohn-Sham orbitals and

correlation energy from a DFT calculation for use in COLUMBUS calculations. The inability to

use point group symmetry in the DFT/MRCI calculation complicated final state assignment,
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as well as uncovered bugs in the workings of the SOCI code CIUDG. Additionally, subtle

differences between the behavior of NWChem and SCFPQ led to discrepancies in the total DFT

energies produced by both programs.

By developing an in situ numerical integration capability within SCFPQ, as well as

implementation of various density functionals, the file-based interface could be eliminated

in favor of a completely self-consistent DFT capability within SCFPQ. It would be easier

to implement point group symmetry through this approach, than to expand the file-based

interface between the two independent programs to incorporate symmetry.

The computational methods necessary to implement a restricted Kohn-Sham DFT

approach are well documented, an incomplete list of references include (10) (59) (97) (96)

(65), just to name a few.

In order to implement a grid-based DFT capability within SCFPQ, beyond implemen-

tation of the density functionals, an ability to numerically integrate these functionals and

their functional derivatives over all space, or some subset of space, using the one- and two-

electron density produced during each iteration is needed. If the use of a hybrid exchange

functional is desired, the exchange portion of the two-electron Fock matrix will have to be

identified and modified. Additionally, the ability to evaluate basis functions at grid points

is necessary.

The basic routines for a set of density functionals, plus the grid numerical quadrature

routines have been developed and are in place, as are additional utilities for evaluating basis

functions at various points in space. The only step that remains is the final development,

integration, testing and validation of the DFT specific parts of the code.

Hybrid Exchange-Correlation Density Functional Implementation. While the model

developed in this work was based on a correlation-only density functional, research into den-

sity functionals indicates that using 100% exact exchange without any exchange functional

mixture is not the most accurate approach (102). Research by Perdew et al indicates the

optimal mixture of exact HF exchange and exchange functional in hybrid density functionals

ranges from 20 to 30% exact exchange, 70 to 80% exchange functional.
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Additional work on this implementation of the DFT/MRCI model would be neces-

sary in order to implement the use of a hybrid exchange-correlation functional. If the in

situ DFT within SCFPQ was developed to enable use of hybrid exchange functionals, then

a detailed investigation of the necessary modifications to diagonal CI matrix elements is

in order. Recall that in Grimme and Waletzke’s work, their diagonal CI matrix element

manipulations led to spin multiplicity limitations in their model, as well as three additional

empirical parameters. Careful study of the inclusion of a hybrid exchange functional into

this DFT/MRCI model is required to see if a hybrid exchange-correlation density functional

could be used in conjunction with the CIUDG GUGA based CI code without introducing spin

multiplicity limitations or additional empirical parameters.

Implementation of a hybrid exchange-correlation density functional within this DFT/MRCI

model represents a major research effort. It would require the development of a grid-based

DFT capability capable of using hybrid functionals within SCFPQ before starting. If this

capability is in place, careful study of the problem, plus significant manipulation of the

existing DFT/MRCI model would be necessary.

Investigations into the Theoretical Basis of the DFT/MRCI Method. A final, and

more open-ended research spin-off from this work is to seriously investigate what mechanisms

in this hybrid DFT and CI model are responsible for the accuracy and efficiency observed,

in this work, and in the work by Grimme, Waletzke, and Kleinschmidt, as well as others.

A limitation to the Kohn-Sham approach to density functional theory is the inability to

systematically improve upon the results obtained with an approximate exchange-correlation

density functional. In wave function based approaches, improvement of the results is possi-

ble via many methods, from many body perturbation theory, to configuration interaction,

among others.

Conceptual difficulties remain in the fictitious Hamiltonian approach in applying these

methods to density functional theory results. A serious, long term research effort focused

on finding the theoretical basis for the successes behind the DFT/MRCI model may yield

important results in the attempt to improve upon the successes of DFT. Such a theoretical

description might account for such features observed here as the absolute error banding

observed in the density plots shown in Appendix B.
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Summary

All in all, the aims of this research project were achieved, in that an accurate and effi-

cient DFT/MRCI model was successfully implemented based upon a correlation-only GGA

functional and implemented within a GUGA CI computational framework. The resulting

model had no spin multiplicity limitations inherent in the original model by Grimme and

Waletzke and added one- and two-component relativistic effects, enabling application of the

method to heavy element compounds.

Using the CPBE96 correlation functional, a set of two damping parameters were

obtained by locating in the p1/p2 parameter space the values which minimized the averaged,

normalized error between the DFT/MRCI excitation energy for a given transition and the

corresponding FCI result for the same transition. The training set used consisted of the

first two rows of the periodic table, focusing mainly on atomic calculations.

The model developed was successfully tested, first using small, minimal basis calcula-

tions, then using larger molecular and atomic applications. A carbon monoxide calculation

demonstrated the DFT/MRCI capabilities in a non-relativistic calculation, producing rela-

tive errors with respect to measured experimental values of 1.3% for the 1Σ+ to 3Π transition

and 12.2% for the 1Σ+ to 1Π electronic transition with an overall reduction in CI expansion

size of a factor of 43. Similar trends were observed in this DFT/MRCI calculation as were

reported by Grimme and Waletzke (63). Carbon monoxide DFT/MRCI results are listed

in Table 13.

Scalar relativistic and spin-orbit capability was demonstrated using calculations on

boron fluoride and the bromine atom. This DFT/MRCI model was unable to accurately

resolve the 22 cm−1 splitting of the 3Π state in boron fluoride, though it did achieve a

respectable relative error for the 1Σ+ → 3Π transition with experiment of roughly 3% with

a reduction in CI expansion length of a factor of 46. Although Kleinschmidt et al (76) were

more sucessful at resolving the spin-orbit splitting, their reported excitation was in good

agreement with the result obtained using this model. Boron fluoride DFT/MRCI results

are listed in Table 14.

The next DFT/MRCI calculation on the bromine atom demonstrated that this imple-

mentation of the DFT/MRCI model could achieve moderate accuracy on a heavy element
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with large spin-orbit splitting. Additionally, it demonstrated this ability on a system that

neither the original Grimme and Waletzke nor Kleinschmidt methods could calculate, since

it had a doublet spin-multiplicity. An unexpected doubling of the eigenvalue degeneracies

were observed in the odd-electron C1 calculation on bromine, which were attributed to a

bug in the CIUDG code not associated with the DFT/MRCI model. For the bromine atom,

a relative error in the 2P 3

2

to 2P 1

2

electronic transition with experiment of roughly 20% was

achieved with a factor of 33 reduction in the CI expansion length. Table 15 lists the bromine

DFT/MRCI excitation energies.

For the uranium ionic and molecular calculations, work had to be done to convert the

basis set used to obtain the results reported in chapter two, using 3sd basis functions, to 1s

and 3d functions compatible with the DFT code. The converted basis set had fewer s and

d functions, though the results for f → f transitions were essentially unaffected. Table 52

in Appendix C compares MR-SOCISD results on uranium +5 using both the original and

converted basis set.

The DFT/MRCI calculation on the uranium +4 ion produced results reminiscent

of the bromine calculation. Relative errors with experiment of approximately 15% were

achieved in the 3H4g to 3F2g electronic transition, with a factor of 21 reduction in the CI

expansion size. Degeneracy errors significantly complicated wave function analysis and state

assignment. Table 17 list the DFT/MRCI excitation energies obtained and their relative

errors with experiment.

The best DFT/MRCI calculation on an odd-electron heavy element was achieved on

the uranium +5 ion, which was another odd-electron doublet system. A relative error in

the excitation energy of approximately 9% for the 2F 5

2

to 2F 7

2

transition was achieved when

compared with measured experiment values, with a factor of 46 reduction in CI expansion

size. Table 16 show the DFT/MRCI results for the uranium +5 ion.

The final application of the DFT/MRCI model on the uranyl (UO2+
2 ) ion yields results

that compared favorably with MR-SOCISD calculations performed (9) for several orders

of magnitude less computational effort in terms of the dimensions of the CI expansions

involved. The DFT/MRCI calculation used a small expansion of nearly 40,000 CSFs, while

the MR-SOCISD calculation involved nearly 5,000,000 CSFs. The DFT/MRCI results on
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uranyl fluorescent series compared favorably with those measured in a range of crystals

(111). Table 19 shows this comparison for uranyl.

Suggestions for future work include repeating the analysis done here with a meta-

GGA density functional, as well as integrating DFT within the SCFPQ program to eliminate

the need for a file-based interface with NWChem. This would facilitate the incorporation of

symmetry into the DFT/MRCI model. Further investigations into adapting this model for

use with a hybrid exchange-correlation density functional might improve accuracy of the

method, while more work into the theoretical basis for the successes of the DFT and CI

method could lead to further improvements in accuracy and computational efficiency.
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Appendix A. List of Acronyms

RMS Root Mean Square

MR-CISD Multi-reference Configuration Interaction, Single and Double Excitations

DFT Density Functional Theory

TDDFT Time Dependent Density Functional Theory

ROHF Restricted-Open Hartree Fock

MR-DFT Multi-reference Density Functional Theory

MR-SOCISD Multi-reference Spin-Orbit Configuration Interaction Singles and Doubles

HF Hartree-Fock

SCF Self-Consistent Field

CI Configuration Interaction

CIUDG Configuration Interaction Unitary Diagonalize

RECPs Relativistic Effective Core Potentials

RECP Relativistic Effective Core Potential

CIS Configuration Interaction Singles

CISD Configuration Interaction Singles and Doubles

LDA Local Density Approximation

GGA Generalized Gradient Approximation

PBE Perdew Burke and Ernzerhof

CSFs Configuration State Functions

CSF Configuration State Function

BHLYP Becke half-and-half hybrid exchange correlation functional

mH milli Hartrees

FCI Full Configuration Interaction

CAS Complete Active Space
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B3LYP Becke Three Parameter Hybrid Density Functional

BLAS Basic Linear Algebra System

NIST National Institute of Standards and Technology

CCCBDB Computational Chemistry Comparison and Benchmark DataBase

HOMO Highest Occupied Molecular Orbital

SOCI Spin-orbit Configuration Interaction

eV Electron Volt

MRCI Multireference Configuration Interaction

cc-pVDZ Correlation Consistent Valence Double-ζ with Polarization Functions

kJ kilo Joule
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Appendix B. DFT/MRCI Damping Parameter Selection

This appendix contains the results of FCI calculations on the atomic and molecular systems

used to determine the optimal damping parameters used in the uranium calculations, as

well as DFT/MRCI calculations performed over a wide range of damping parameters, p1

and p2. All DFT/MRCI calculations were performed on a 20 by 20 grid in the damping

parameter space. Statistical analysis of the error between the electronic excitation energy

as computed by DFT/MRCI and FCI is also listed.

For each system examined, a density plot representing the absolute value of the error

between the DFT/MRCI and FCI for the lowest, spin-multiplicity allowed electronic transi-

tion. The range of the damping paramters in the density plots are 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 10.

The squares of the Hartree-Fock configurations from ab initio calculations on each of

the systems is given in Table B. It is a measure of the multi-reference character of system.

Table 20 MR-CISD Hartree-Fock Configuration Coefficients For Systems Used for Damp-
ing Parameter Determination

System Basis Set c20 State

H2 cc-pVDZ 0.983859 1Σ+
g

H2 cc-pVTZ 0.985199 1Σ+
g

He cc-pVDZ 0.992739 1S

He cc-pVTZ 0.992673 1S

Li, cc-pVDZ 0.999924 2S

Li, cc-pVTZ 0.999664 2S

Be cc-pVDZ 0.906694 1S

Be cc-pVTZ 0.904388 1S

B cc-pVDZ 0.928991 2P

C cc-pVDZ 0.951450 3P

N cc-pVDZ 0.969066 4S

O cc-pVDZ 0.967909 3P

F cc-pVDZ 0.970048 2P

Ne cc-pVDZ 0.972435 1S

Be2 cc-pVDZ 0.787166 1Σ+
g
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Hydrogen Molecule, cc-pVDZ Basis

The H2 cc-pVDZ calculation had 10 basis functions. The active space used in the

DFT/MRCI calculations for H2 was a CAS over the 1σ, and 2σ orbitals, with the four

highest energy virtual orbitals frozen.

Table 21 Hydrogen Molecule, cc-pVDZ Basis Set, Full CI Results

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -1.1634454317 0.00
2 -0.7719930623 1.00
3 -0.6526531835 0.00
4 -0.5172916288 1.00
5 -0.3771969905 0.00
6 -0.1712406269 1.00
7 -0.0860211873 0.00
8 -0.0260620923 0.00
9 0.0994560644 1.00
10 0.0994560644 1.00

Table 22 DFT/MRCI Error Analysis for Hydrogen Molecule, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 3.17379 1.43684

In figure 8, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.
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Figure 8 H2 cc-pVDZ basis DFT/MRCI Absolute Error with Respect to FCI Results
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Hydrogen Molecule, cc-pVTZ Basis

The H2 cc-pVTZ calculation had 28 basis functions. The active space used in the

DFT/MRCI calculations for H2 was a CAS over the 1σ, and 2σ orbitals, with the eighteen

highest energy virtual orbitals frozen.

Table 23 Full CI Results for Hydrogen Molecule, cc-pVTZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -1.1721405481 0.00
2 -0.7803634789 1.00
3 -0.6771947554 0.00
4 -0.6276575090 1.00
5 -0.5486996299 0.00
6 -0.3915914198 1.00
7 -0.3904709905 1.00
8 -0.3904709905 1.00
9 -0.2612510066 0.00
10 -0.2455885332 0.00
11 -0.2455885332 0.00
12 -0.1223283192 0.00
13 0.0141686518 1.00
14 0.0605395246 1.00
15 0.0682666734 0.00
16 0.0685243592 0.00
17 0.0685243592 0.00
18 0.0987817252 1.00
19 0.0987817252 1.00
20 0.1409960535 0.00

Table 24 DFT/MRCI Error Analysis for Hydrogen Molecule, cc-pVTZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 0.832851 2.98819

In figure 9, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.
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Figure 9 H2 cc-pVTZ basis DFT/MRCI Absolute Error with Respect to FCI Results
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Helium Atom, cc-pVDZ Basis

The He atom cc-pVDZ calculation had five basis functions. The active space used in

the DFT/MRCI calculations for He was a CAS over the 1s, and 2s orbitals. No virtual

orbitals were frozen.

Table 25 Full CI Results for Helium Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -2.8875948311 0.00
2 -1.4011632767 1.00
3 -0.9521509999 0.00
4 -0.3846928589 1.00
5 -0.3846928589 1.00
6 -0.3846928589 1.00
7 -0.0140305136 0.00
8 -0.0140305136 0.00
9 -0.0140305136 0.00
10 0.6027713426 0.00
11 1.4479742314 1.00
12 1.4479742314 1.00
13 1.4479742314 1.00
14 1.5006676821 0.00
15 1.5006676821 0.00
16 1.5006676821 0.00
17 2.4194075597 1.00
18 2.4194075597 1.00
19 2.4194075597 1.00
20 2.5468195066 0.00
21 2.5468195066 0.00
22 2.5468195066 0.00
23 2.5468195066 0.00
24 2.5468195066 0.00
25 2.7586172117 0.00

In figure 10, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.
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Table 26 DFT/MRCI Error Analysis for Helium Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 -26.7143 1.993013

Figure 10 He Atom, cc-pVDZ basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Helium Atom, cc-pVTZ Basis

The He atom cc-pVTZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for He was a CAS over the 1s, and 2s orbitals. The seven

highest energy virtual orbitals were frozen.

Table 27 Full CI Results for Helium Atom, cc-pVTZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -2.8970673069 0.00
2 -1.9334705002 1.00
3 -1.7529254971 0.00
4 -1.2532701076 1.00
5 -1.2532701076 1.00
6 -1.2532701076 1.00
7 -1.0165706840 0.00
8 -1.0165706840 0.00
9 -1.0165706840 0.00
10 -0.4017414794 0.00
11 0.1064824663 1.00
12 0.1064824663 1.00
13 0.1064824663 1.00
14 0.1382686250 0.00
15 0.1382686250 0.00
16 0.1382686250 0.00
17 0.6636303193 1.00
18 0.7313588535 1.00
19 0.7313588535 1.00
20 0.7313588535 1.00

Table 28 DFT/MRCI Error Analysis for Helium Atom, cc-pVTZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 57.9311 0.263939

In figure 11, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.
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Figure 11 He Atom, cc-pVTZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Lithium Atom, cc-pVDZ Basis

The Li atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for Li was a CAS over the 1s, 2s, 2p, 3s, and 3p orbitals. No

virtual orbitals were frozen.

Table 29 Full CI Results for Lithium Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -7.4326345923 0.50
2 -7.3648490641 0.50
3 -7.3648490641 0.50
4 -7.3648490641 0.50
5 -7.2572185901 0.50
6 -7.2572185901 0.50
7 -7.2572185901 0.50
8 -7.2469567861 0.50
9 -7.1026935868 0.50
10 -7.1026935868 0.50
11 -7.1026935868 0.50
12 -7.1026935868 0.50
13 -7.1026935868 0.50
14 -5.2980319280 0.50
15 -5.2531598973 1.50
16 -5.2531598973 1.50
17 -5.2531598973 1.50
18 -5.2253952659 0.50
19 -5.2253952659 0.50
20 -5.2253952659 0.50

Table 30 DFT/MRCI Error Analysis for Li Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 8.37894 4.22027

In figure 12, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.
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Figure 12 Li Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Lithium Atom, cc-pVTZ Basis

The Li atom cc-pVTZ calculation had 30 basis functions. The active space used in

the DFT/MRCI calculations for Li was a CAS over the 1s, 2s, 2p, 3s, and 3p orbitals. The

highest energy virtual orbital was frozen. ROHF open-shell coefficients corresponding to

the high-spin 2S state were used to generate the initial orbitals, with exchange-correlation

potential integrals from an unrestricted DFT calculation.

Table 31 Full CI Results for Lithium Atom, cc-pVTZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -7.4332546271 0.50
2 -7.3654330817 0.50
3 -7.3654330817 0.50
4 -7.3654330817 0.50
5 -7.2827258411 0.50
6 -7.2761519403 0.50
7 -7.2761519403 0.50
8 -7.2761519403 0.50
9 -7.2021446003 0.50
10 -7.2021446003 0.50
11 -7.2021446003 0.50
12 -7.2021446003 0.50
13 -7.2021446003 0.50
14 -7.0789295728 0.50
15 -7.0789295728 0.50
16 -7.0789295728 0.50
17 -7.0370981897 0.50
18 -6.7539585204 0.50
19 -6.7539585204 0.50
20 -6.7539585204 0.50
21 -6.7539585204 0.50
22 -6.7539585204 0.50
23 -6.7260996854 0.50
24 -6.7260996854 0.50
25 -6.7260996854 0.50
26 -6.7260996854 0.50
27 -6.7260996854 0.50
28 -6.7260996854 0.50
29 -6.7260996854 0.50
30 -5.3317686889 0.50
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Table 32 DFT/MRCI Error Analysis for Li Atom, cc-pVTZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 12.2333 5.61206
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In figure 13, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 13 Li Atom, cc-pVTZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results

0.2 0.4 0.6 0.8 1

2

4

6

8

10

19.0837

1.42195

133



Beryllium Atom, cc-pVDZ Basis

The Be atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for Be was a CAS over the 2s, 2p, and 3s orbitals. The 1s core

electrons were frozen. No virtual orbitals were frozen.

Table 33 Full CI Results for Beryllium Atom, cc-pVTZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -14.6170550612 0.00
2 -14.5160407645 1.00
3 -14.5160407645 1.00
4 -14.5160407645 1.00
5 -14.4097625863 0.00
6 -14.4097625863 0.00
7 -14.4097625863 0.00
8 -14.3423297244 1.00
9 -14.3423297243 1.00
10 -14.3423297243 1.00
11 -14.3324015006 0.00
12 -14.3324015006 0.00
13 -14.3324015006 0.00
14 -14.3324015006 0.00
15 -14.3324015006 0.00
16 -14.2603499935 1.00
17 -14.2518898465 0.00
18 -14.2223192621 0.00
19 -14.2223192621 0.00
20 -14.2223192620 0.00

Table 34 DFT/MRCI Error Analysis for Be Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 -0.0959052 0.0
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In figure 14, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 14 Be Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Beryllium Atom, cc-pVTZ Basis

The Be atom cc-pVTZ calculation had 30 basis functions. The active space used in

the DFT/MRCI calculations for Be was a CAS over the 2s, 2p, and 3s orbitals. The 1s core

electrons were frozen. The eleven highest energy virtual orbitals were frozen.

Table 35 Full CI Results for Beryllium Atom, cc-pVTZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -14.6194922142 0.00
2 -14.5187820394 1.00
3 -14.5187820394 1.00
4 -14.5187820394 1.00
5 -14.4196053512 0.00
6 -14.4196053512 0.00
7 -14.4196053512 0.00
8 -14.3500737083 1.00
9 -14.3453786584 1.00
10 -14.3453786584 1.00
11 -14.3453786584 1.00
12 -14.3409231284 0.00
13 -14.3409231283 0.00
14 -14.3409231283 0.00
15 -14.3409231283 0.00
16 -14.3409231283 0.00
17 -14.3209144672 0.00
18 -14.2881970390 1.00
19 -14.2881970390 1.00
20 -14.2881970390 1.00

Table 36 DFT/MRCI Error Analysis for Be Atom, cc-pVTZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 -6.72072 3.37373
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In figure 15, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 15 Be Atom, cc-pVTZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Boron Atom, cc-pVDZ Basis

The B atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for B was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s
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core electrons were frozen. No virtual orbitals were frozen. ROHF open-shell coefficients

corresponding to the high-spin 2P state were used to generate the initial orbitals, with

exchange-correlation potential integrals from an unrestricted DFT calculation.

Table 37 Full CI Results for Boron Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -24.5889055248 0.50
2 -24.5888984561 0.50
3 -24.5888984561 0.50
4 -24.4609115942 1.50
5 -24.4609115942 1.50
6 -24.4609106003 1.50
7 -24.3565727635 0.50
8 -24.3565727635 0.50
9 -24.3565727178 0.50
10 -24.3565722966 0.50
11 -24.3565722966 0.50
12 -24.2874059053 0.50
13 -24.2389721593 0.50
14 -24.2389689817 0.50
15 -24.2389689817 0.50
16 -24.1826143223 0.50
17 -24.1647026709 0.50
18 -24.1646933564 0.50
19 -24.1646933564 0.50
20 -24.1464989570 1.50

Table 38 DFT/MRCI Error Analysis for Boron Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 3.55402 9.09908
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In figure 16, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 16 B Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Carbon Atom, cc-pVDZ Basis

The C atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for C was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s

core electrons were frozen. No virtual orbitals were frozen. ROHF open-shell coefficients

corresponding to the high-spin 3P state were used to generate the initial orbitals, with

exchange-correlation potential integrals from an unrestricted DFT calculation. The large

error spot in Figures 17 is a result of shifting of the ground state and the 1S state, probably

due to a numerical instability in the iterative matrix diagonalization generated by an ill-

conditioned matrix.

A single anamoly occured during the carbon calculation calculation at p1 = 0.96,

p2 = 4.0. The carbon calculation did not yield a meaningful excitation energy at that point

in the p1/p2 parameter space. This behavior could be due to the introduction of a numer-

ical instability in the carbon calculation at that point on the grid. No other DFT/MRCI

calculations exhibited this behavior. Examing a slice through the carbon data as a function

of p2 at p1 = 0.96, a clear, smooth trend was apparent, with the exception of that single

data point. Because of the data dropout in the carbon calculation at that particular point,

the error for that point was interpolated from neighboring points in the carbon calculation.
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Table 39 Full CI results for Carbon Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -37.7592125200 1.00
2 -37.7592008135 1.00
3 -37.7592008135 1.00
4 -37.6165280238 2.00
5 -37.4548851325 1.00
6 -37.4548836429 1.00
7 -37.4548836429 1.00
8 -37.4548797964 1.00
9 -37.4548797964 1.00
10 -37.3977324546 1.00
11 -37.3977297417 1.00
12 -37.3977297417 1.00
13 -37.2296166451 1.00
14 -37.1268085912 1.00
15 -37.1268085912 1.00
16 -37.1267894120 1.00
17 -37.1267894120 1.00
18 -37.1267830398 1.00
19 -37.1218806259 1.00
20 -37.1218806259 1.00

Table 40 DFT/MRCI Error Analysis for Carbon Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 6.62745 15.9442
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In figure 17, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 17 C Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Nitrogen Atom, cc-pVDZ Basis

The N atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for N was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s

core electrons were frozen. No virtual orbitals were frozen. ROHF open-shell coefficients

corresponding to the high-spin 4S ground state were used to generate the initial orbitals,

with exchange-correlation potential integrals from an unrestricted DFT calculation.

Table 41 Full CI Results for Nitrogen Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -54.4767066248 1.50
2 -54.0654859868 1.50
3 -54.0654859868 1.50
4 -54.0654859868 1.50
5 -53.5574561262 1.50
6 -53.5574561262 1.50
7 -53.5574561262 1.50
8 -53.5565303513 1.50
9 -53.5565303513 1.50
10 -53.5565303513 1.50
11 -53.5565303513 1.50
12 -53.5565303513 1.50
13 -53.5409323847 1.50
14 -53.5409323847 1.50
15 -53.5409323846 1.50
16 -53.4320611239 1.50
17 -53.3515711786 2.50
18 -53.3503670002 2.50
19 -53.3503670002 2.50
20 -53.3503670002 2.50

Table 42 DFT/MRCI Error Analysis for Nitrogen Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 3.95767 3.58527
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In figure 18, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

144



Figure 18 N Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Oxygen atom, cc-pVDZ Basis set

The O atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for N was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s

core electrons were frozen. No virtual orbitals were frozen. ROHF open-shell coefficients

corresponding to the high-spin 3P ground state were used to generate the initial orbitals,

with exchange-correlation potential integrals from an unrestricted DFT calculation.

Table 43 Full CI Results for Oxygen Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -74.9076668782 1.00
2 -74.9076668782 1.00
3 -74.9076651533 1.00
4 -74.3144151907 1.00
5 -74.3144151907 1.00
6 -74.3144089572 1.00
7 -73.8961915673 2.00
8 -73.8961707443 2.00
9 -73.8961707443 2.00
10 -73.8294403260 1.00
11 -73.8294047725 1.00
12 -73.8294047725 1.00
13 -73.8197705793 2.00
14 -73.7854164706 1.00
15 -73.7854164706 1.00
16 -73.7853895151 1.00
17 -73.7853895151 1.00
18 -73.7853815338 1.00
19 -73.7301128656 1.00
20 -73.7301128656 1.00
21 -73.7301004221 1.00
22 -73.7301004221 1.00
23 -73.7300923622 1.00
24 -73.7300923622 1.00
25 -73.7296367317 1.00
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Table 44 DFT/MRCI Error Analysis for Oxygen Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 37.497 2.42638
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In figure 19, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 19 O Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Fluorine Atom, cc-pVDZ Basis

The F atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for F was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s

core electrons were frozen. No virtual orbitals were frozen. ROHF open-shell coefficients

corresponding to the high-spin 2P ground state were used to generate the initial orbitals,

with exchange-correlation potential integrals from an unrestricted DFT calculation.

Table 45 Full CI Results for Fluorine Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -99.5250149572 0.50
2 -99.5250122692 0.50
3 -99.5250122692 0.50
4 -98.7098466484 0.50
5 -98.2263496364 1.50
6 -98.2263398709 1.50
7 -98.2263398709 1.50
8 -98.1722681950 0.50
9 -98.1722404883 0.50
10 -98.1722404883 0.50
11 -98.1452591018 1.50
12 -98.1452591018 1.50
13 -98.1452580440 1.50
14 -98.1452580440 1.50

Table 46 DFT/MRCI Error Analysis for Fluorine Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 70.365 0.763109
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In figure 20, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 20 F Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Neon Atom, cc-pVDZ Basis

The Ne atom cc-pVDZ calculation had 14 basis functions. The active space used in

the DFT/MRCI calculations for Ne was a CAS over the 2s, 2p, 3s, and 3p orbitals. The 1s

core electrons were frozen. No virtual orbitals were frozen.

Table 47 Full CI Results for Neon Atom, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -128.6762641527 0.00
2 -127.0362874267 1.00
3 -126.9067374859 1.00
4 -126.9067374858 1.00
5 -126.9067374858 1.00
6 -126.9067374857 1.00
7 -126.9067374856 1.00
8 -126.8392428164 0.00
9 -126.8392428082 0.00
10 -126.8392428052 0.00
11 -126.8379777691 1.00
12 -126.8379777659 1.00
13 -126.8379777577 1.00
14 -126.8208198490 0.00

Table 48 DFT/MRCI Error Analysis for Neon Atom, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 33.3121 2.45285
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In figure 21, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 21 Ne Atom, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Beryllium Dimer, cc-pVDZ Basis

The Be dimer cc-pVDZ calculation had 28 basis functions. The active space used in

the DFT/MRCI calculations for Be2 was a CAS over the 2σ, 1π, 1π∗, 2σ∗, 3σ and 3σ∗

orbitals. The 1σ and 1σ∗ orbitals were frozen.

Table 49 Full CI Results for Beryllium Dimer, cc-pVDZ Basis

Eigenvalue Energy(au) Spin Quantum
Number(S)

1 -29.2338409859 0.00
2 -29.1914009165 1.00
3 -29.1802291199 1.00
4 -29.1802291199 1.00
5 -29.1476359431 0.00
6 -29.1476359431 0.00
7 -29.1225304798 1.00
8 -29.1225304798 1.00
9 -29.1156678694 0.00
10 -29.1156678694 0.00
11 -29.1143923436 1.00
12 -29.1143923436 1.00
13 -29.1007032177 0.00
14 -29.0976158970 1.00
15 -29.0931147426 0.00
16 -29.0868631904 0.00
17 -29.0868631903 0.00
18 -29.0828377548 2.00
19 -29.0828377548 2.00
20 -29.0769245880 1.00
21 -29.0744258409 2.00
22 -29.0666929750 0.00
23 -29.0579750627 0.00
24 -29.0578158780 1.00
25 -29.0578158779 1.00
26 -29.0534236925 1.00
27 -29.0534236924 1.00
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Table 50 DFT/MRCI Error Analysis for Beryllium Dimer, cc-pVDZ Basis

p1 p2 Average Standard deviation
error (mH) of error (mH)

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 10 -68.4936 3.41014
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In figure 22, the horizontal axis is p1, the vertical axis is p2, and the absolute error

units are milli-Hartrees.

Figure 22 Be Dimer, cc-pVDZ Basis DFT/MRCI Absolute Error with Respect to FCI
Results
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Appendix C. A Procedure for Conversion of 3sd Basis Functions into Equivalent 1s

Functions

One method for generating correlation-consistent double-ζ quality basis sets for use with

actinides is to perform open-shell Hartree-Fock atomic calculations. This procedure results

in a shell-averaged description of a particular spin-state of the atom, which facilitates a

balanced description of atomic states in MR-SOCISD calculations.

Because exponent collapse can be a frequent occurrence when using 1s primitives in

optimization of the exponents for heavy-element atom basis sets (20), Cartesian d functions

are frequently used, with an additional symmetry adapted linear combination added to

represent the 3s functions. Such functions vanish at the origin, making them quite useful

with shape-consistent pseudo potentials, which go smoothly and nodelessly to zero at the

origin. Exponent collapse can occur during the development of 2p basis functions, though

not as often. In this case Cartesian f functions can be used to circumvent the exponent

collapse that can occur in the exponent optimization in larger basis sets. When 2p function

primitives are used, an extra primitive is typically added to ensure the vanishing of the

derivative of the contracted function at the origin (31). When Cartesian functions of higher

principle quantum number are used (3sd, 4pf , etc.), the resulting contracted functions need

not have their functional behavior at the origin compensated with an additional primitive.

Polarization functions are added, and the exponents are hand optimized using MR-SOCISD

calculations, typically involving correlation of the 5f electrons for uranium. The procedure

is relatively straightforward for cc-pVDZ quality basis sets, however, the hand optimization

step becomes tedious when adding a second g polarization function. This tedium may be

avoided or reduced via the use of even-tempered bases.

Recently, Dr. Russell Pitzer has had success developing basis sets for heavier atoms

that do not use 3s functions. To develop these basis sets, he uses a modified atomic SCF

program which uses a Legendre expansion method for the optimization of the primitive expo-

nents, developed by Petersson et al (104). This method results in a set of well-conditioned

optimization parameters for optimization of the exponents, and initial results on heavy

atoms show that the method is more stable with respect to exponent collapse. The bromine

cc-pVDZ basis set provided by Dr. Pitzer was generated using this method. The original

bromine cc-pVDZ basis set developed by Dr. Jean Blaudeau used 3s primitives (21). Un-
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fortunately, a cc-pVDZ basis set for use with the uranium 68 electron RECP could not be

generated in time for this work, and an alternate method for producing 1s functions from

the 3s primitives had to be used.

Conversion of the Uranium cc-pVDZ 3s Primitives to 1s Functions By Fitting.

Since attempts to reoptimize exponents for the 6s and 7s basis functions using 1s primitives

results in exponent collapse when applied to the uranium +2 ion using the 68 electron RECP,

an alternate method involving fitting had to be used. The basic idea behind the procedure

is to obtain a set of 1s basis functions that provide a good fit to the 3s basis function orbital

and radial probability density, without experiencing exponent collapse when re optimizing

the primitive coefficients.

The first step in the method replaces the 3s basis functions by 1s basis functions, such

that their maximum values coincide. A normalized 3s primitive has the form

f3s (r) = N3s (α3s) r
2e−α3sr2

, (94)

while 1s primitives have the form

f1s (r) = N1s (α1s) e
−α1sr2

. (95)

Differentiating equations 94 and 95 with respect to r and setting them equal yields a condi-

tion on the exponents of the 1s functions in order to match the maxima of the 3s functions

of

α1s =
α3s

3
. (96)

Because of the r2 multiplicative factor, 3s functions go to zero at the origin, while 1s

primitives do not. This behavior is undesirable in the 1s functions for use with RECPs, and

so the first correction to this 1s basis set involves adding a tight primitive (large exponent),

the sole function of which is to force the 1s basis function to go to zero at the origin. The

coefficient for this primitive is determined by a linear combination of the other coefficients,

satisfying the condition

c0 = −
N
∑

i=1

cif1s (r = 0) . (97)
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Now that the initial set of 1s primitives has been defined by the exponent condition in

equation 96 and the coefficient of the tight, canceling primitive has been determined, the

conversion procedure proceeds as follows:

1. Add another 1s primitive.

2. Reoptimize all 1s coefficients in an atomic SCF calculation.

3. Determine the coefficient on c0 from Equation 97.

4. Plot the difference in radial probability densities between the new 1s and original 3s

basis function.

This procedure is repeated until a decent fit occurs, or adding an additional 1s function

results in exponent collapse. The later case is typically the stopping point of the procedure.

Figure 23 shows the original 3s orbital along with the converted 1s orbital formed using

10 primitives from the above procedure. Figure 24 shows the radial probability density

functions of the original 3s orbital and the converted 1s orbital. Figure 25 shows the

difference between the radial probability densities of the original 3s and converted 1s basis

function.

Two figures of merit which measure the goodness of the fit procedure are defined for the

basis set conversion. Each value measures the average deviation in the radial probability

density between the original 3s function and the new 1s function over a range of radial

values. The average integrated density difference is defined as

AIDD =
1

b− a

∫ b

a

(

r2 (φ∗3s (r)φ3s (r) − φ∗1s (r)φ1s (r))
)

dr, (98)

while the average integrated absolute density difference is defined by

AIADD =
1

b− a

∫ b

a

(

r2 |φ∗3s (r)φ3s (r) − φ∗1s (r)φ1s (r)|
)

dr. (99)

The conversion procedure necessarily results in a smaller basis set than results from using

3sd functions. For every 3sd contraction, there are six symmetry adapted basis functions.

These correspond to the x2 + y2 + z2, which is the 3s function, and another five functions

representing 3d functions. For example, the original 3s basis had four contractions. This
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Figure 23 Uranium cc-pVDZ 68 Electron RECP 3sd and Converted 1s Orbitals
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Figure 24 Uranium cc-pVDZ 68 Electron RECP 3sd and Converted 1s Orbital Radial
Probability Densities
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Figure 25 Uranium cc-pVDZ 68 Electron RECP 3sd and Converted 1s Radial Probability
Density Difference
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resulted in 24 total basis functions corresponding to one contractions for the uranium 6s

shell, one contraction for the uranium 5d and one contraction for the 6d shell, with the fourth

contraction serving as a diffuse function for all three. However, each contraction in the 3sd

basis generates six basis functions for a total of 24 functions. There are four 3s functions,

and 20 3d functions. Replacing the 6s contractions in the 3sd basis with two 1s contractions

generates two basis functions. Additionally, removing the 3s symmetry adapted function

removes three more functions. So, the converted 1s basis contains two 6s contractions, and

three 3d contractions, for a total of 17 basis functions. Missing in the converted 1s basis

set are two 6s basis functions and one 3d set, so the converted basis has seven fewer basis

functions than the 3sd basis set. The end result of the conversion process yields a 1s basis

set for use with the uranium 68 electron RECP, but has two fewer s functions and five fewer

d functions. Since it is a smaller basis, the energetics from it will be slightly worse than the

results obtained using the 3sd basis. This is best illustrated by looking at the MR-SOCISD

results on the uranium +5 ion using both basis sets, same active spaces. Table 51 shows

the excitation energies obtained from both basis sets using a (5f)1 active space, while Table
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Table 51 U5+ Results From Both 3sd and 1s Converted Basis Set, 5f1 Reference Space

68e 68e
Principle RECP RECP
LS cc-pVDZ cc-pVDZ

J Component 3sd basis 1s basis Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

5

2
u 2Fo

5

2

0 0 0
7

2
u 2Fo

7

2

7560(-0.6) 7598(-0.1) 7608.6
3

2
g 2D 3

2

103246(+13.5) 105305(+15.7) 90999.6
5

2
g 2D 5

2

112030(+11.5) 113721(+13.1) 100510.5
5

2
u 4Fo

5

2

116683 114045
7

2
u 4Fo

7

2

121025 118402
1

2
g 2S 1

2

156038(+10.3) 193377(+36.7) 141447.5

RMS devia-
tion

10.2% 21.7%

52 shows the excitation energies obtained from both basis sets using all (5f6d)1 references.

The effect on the excitation energies is most clearly seen in the 2D and 2S states, where

the converted 1s basis set has less flexibility than the 3sd basis. Listed below is the 1s

converted basis for use with the uranium 68 shapte-consistent electron relativistic effective

core potential, obtained from the original 3s basis developed by Dr. Scott Brozell. The 3sd

notes listed below are from Dr. Brozell’s development work, the other notes describe the

conversion procedure.
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Table 52 U5+ Results From Both 3sd and 1s Converted Basis Set, (5f6d)1 Reference
Space

68e 68e
Principle RECP RECP
LS cc-pVDZ cc-pVDZ

J Component 3sd basis 1s basis Experiment(17)
(cm−1) (cm−1) (cm−1) (cm−1)

5

2
u 2Fo

5

2

0 0 0
7

2
u 2Fo

7

2

7578(-0.4) 7615(+0.1) 7608.6
3

2
g 2D 3

2

92570(+1.7) 95671(+5.1) 90999.6
5

2
g 2D 5

2

101403(+0.9) 104179(+3.7) 100510.5
5

2
u 4Fo

5

2

116809 114162
7

2
u 4Fo

7

2

121471 118519
1

2
g 2S 1

2

146989(+3.9) 191357(+35.3) 141447.5

RMS devia-
tion

2.2% 17.9%
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! The Uranium +2 Ion Core Potential pVDZ Correlation Consistent Set

!

! Basis Set:

! (8s4p5d4f1g)/[2s2p4d2f1g]

! modified from the u.dication.68.pvdz.sd basis developed by

! S.R. Brozell, Ph.D. Dissertation, The Ohio State University, 1999

! with a change to the most diffuse p contraction coefficients.

! The most diffuse p contraction follows the augmentation scheme of

! P.A. Christiansen, J. Chem. Phys. 112, 10070 (2000).

!

! Core Potential:

! 68 electron core.

! P.A. Christiansen

! Unpublished, Mon Nov 9 13:50 EST 1998.

!

! State: 5d(10)6s(2)6p(6)5f(2)6d(2), av. of config.

!

! Hartree-Fock Calculations

! Total HF Energy State

! -214.13612675 5d(10)6s(2)6p(6)5f(2)6d(2), av. of config-- 3sd basis

! -214.13387918 5d(10)6s(2)6p(6)5f(2)6d(2), av. of config-- 1s basis

!

! Average integrated absolute orbital difference,

! |6s(3s) -6s(1s)| = 0.000978334, r->(0,4au)

! Average Integrated aboslute orbital density difference,

! |6s(3s)-6s(1s)| = 0.00022913, r->(0,4au)

!

! (HF+1+2) Calculations -- on 3sd basis

! Total CI Energy State Description

! -214.30206505 5f(2)6d(2), J=6 5f(2)6d(2) Ref., 5f to 5g

! -214.28867792 5f(2)6d(2), J=4 5f(2)6d(2) Ref., 5f to 5g

!

8 1 2 / U s (8s4p5d4f1g)/[2s2p4d2f1g]

18.0 -0.00778796 0.0

5.346 0.0867051 0.0

1.5 -0.9535696 0.0

0.896 0.3974739 0.0

0.5 0.9553621 1.0

0.357 0.1838804 0.0

0.1559 0.1543360 0.0

0.05187 -0.0150411 0.0

5 3 4 / U sd (8s4p5d4f1g)/[2s2p4d2f1g]

16.040000 -0.0220355 0.0067838 0.0

2.688000 0.7136482 -0.3001085 0.0

1.071000 0.3561056 -0.0536579 0.0

0.467800 0.0172751 0.4687373 0.0

0.155600 0.0052648 0.6719109 1.0

4 2 2 / U p (8s4p5d4f1g)/[2s2p4d2f1g]

7.579000 -0.002612 0.0

1.391000 -0.3323902 0.0

0.623700 0.7835309 -0.31146

0.245300 0.4972529 1.0

4 4 2 / U f 8s4p5d4f1g)/[2s2p4d2f1g]

6.539000 0.0944382 0.0

2.443000 0.4175731 0.0

0.952000 0.4948986 0.0

0.331400 0.2716050 1.0

1 5 1 / U g (8s4p5d4f1g)/[2s2p4d2f1g]

1.645000 1.0000000
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! 6s basis functions were developed from 3sd functions by using a series of avg. of config

! atomic SCF calculations. G function not reoptimized

! Starting with the 3s exponents, 1s exponents were developed by dividing the 3s exponents by 3 to

! produce 1s functions with peak densities in the same place as the 3s functions. Next, a tight primative

! was added, with the purpose of cancelling the orbital at the origin.

! The coefficient on this exponent was calculated to force

! the orbital to go to zero at the origin. All contractions were allowed

! to relax in the atomic SCF calculation. Additional primatives were added until evidence of exponent collapse

! manifested at 9 primatives.

! 6s functions, 5 primatives (3s exponents / 3)

! HF energy = -213.92366504 au, avg integrated |delta density| = 0.00465794

! 6s functions, 6 primatives (alpha=18.0)

! HF energy = -213.93923575 au, avg integrated |delta density| = 0.00429569

! 6s functions, 7 primatives (alpha=1.5)

! HF energy = -214.13183388 au, avg integrated |delta density| = 0.00025679

! 6s functions, 8 primatives (alpha=0.5)

! HF energy = -214.13387918 au, avg integrated |delta density| = 0.00022913

! 6s functions, 9 primatives -- exponent collapse begining to manifest in the 1.5/0.896 exponents

! 3sd basis set development notes

! The atomic set wamizing the (5sd,4p,4f)-exponents in

! Hartree-Fock calculations on the 5f(2)6d(2) av. of config., with the

! idea of obtaining a d and an f basis close to optimum for a U(II)

! or higher oxidation-state ion.

! An additional f, p, or sd primitive lowered the energy by 0.0023, 0.0015,

! or 0.0117, respectively, resulting in exponent-collapse for p or sd.

! The first, second, and third sd, the first p, and the first f contractions,

! which represent the 5d, 6s, 6d, 6p, and 5f orbitals respectively,

! were obtained from a single Hartree-Fock calculation on the above optimized

! exponents.

! The fourth sd, second p, and second f contractions, which represent the

! 6d, 6p, and 5f orbitals respectively, were obtained by freeing the most

! diffuse exponent of the respective symmetry;

! the Christiansen augmentation scheme was followed for the only

! applicable irrep, namely p.

! Thus, the valence space of 6d, 6p, and 5f is double zeta and

! the core space of 5d and 6s is single zeta.

! The polarization set was obtained by optimizing the exponent of

! a single g primitive in HF+1+2 calculations on the lowest state of

! 5f(2)6d(2), allowing for correlation of the 5f shell only.

! The energy versus g primitive curve has a shallow minimum and is

! not affected by the Christiansen augmentation scheme.
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